首页> 外文期刊>Expert Systems with Application >A Monte Carlo simulation based chaotic differential evolution algorithm for scheduling a stochastic parallel processor system
【24h】

A Monte Carlo simulation based chaotic differential evolution algorithm for scheduling a stochastic parallel processor system

机译:基于蒙特卡罗仿真的混沌差分进化算法,用于调度随机并行处理器系统

获取原文
获取原文并翻译 | 示例

摘要

One of the main limitation of the application of evolutionary algorithms (EA) is the tendency to converge prematurely to a local optimum. The EAs suffer with the disadvantage of premature convergence and hence the study on convergence of EAs is always one of the most important research fields. Due to outstanding capability of chaos to avoid being trapped in local optimum, it can be considered as an efficient search tool. Therefore, in current paper, in order to taking properties of chaos, eight chaotic maps are employed within a differential evolution (DE) algorithm for solving a stochastic job scheduling problem. To speedup searching and avoid local optimum traps, the random sequences produced from chaotic maps are utilized instead of random variables in DE. Furthermore, to address the uncertainties arising in scheduling environments, Monte Carlo simulation is used. However, simulation is not an optimization approach. Therefore, we design the simulation-based optimization approach where a simulator is combined with chaotic DE. The simulation experiments are used to evaluate the quality of candidate solutions and the chaotic DE is utilized to find best-compromised solutions and then guide the search direction. The performance of simulation-based chaotic DE algorithm is investigated in a computational study, and the results show the outperformance of suggested method with respect to the traditional methods. (C) 2015 Elsevier Ltd. All rights reserved.
机译:进化算法(EA)应用的主要限制之一是过早收敛到局部最优的趋势。 EA具有过早收敛的缺点,因此对EA收敛的研究一直是最重要的研究领域之一。由于具有出色的混沌能力,可以避免陷入局部最优状态,因此可以将其视为有效的搜索工具。因此,在目前的论文中,为了获得混沌的性质,在差分进化算法中采用了八个混沌图来解决随机作业调度问题。为了加快搜索速度并避免局部最优陷阱,利用混沌映射生成的随机序列代替DE中的随机变量。此外,为了解决调度环境中出现的不确定性,使用了蒙特卡洛模拟。但是,仿真不是一种优化方法。因此,我们设计了一种基于仿真的优化方法,其中将仿真器与混沌DE相结合。仿真实验用于评估候选解决方案的质量,混沌DE用于找到最佳妥协的解决方案,然后指导搜索方向。通过计算研究了基于仿真的混沌DE算法的性能,结果表明该方法相对于传统方法具有更好的性能。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号