首页> 外文期刊>Expert systems with applications >On the performance of multi-GPU-based expert systems for acoustic localization involving massive microphone arrays
【24h】

On the performance of multi-GPU-based expert systems for acoustic localization involving massive microphone arrays

机译:基于多GPU的专家系统在涉及大规模麦克风阵列的声学定位中的性能

获取原文
获取原文并翻译 | 示例

摘要

Sound source localization is an important topic in expert systems involving microphone arrays, such as automatic camera steering systems, human-machine interaction, video gaming or audio surveillance. The Steered Response Power with Phase Transform (SRP-PHAT) algorithm is a well-known approach for sound source localization due to its robust performance in noisy and reverberant environments. This algorithm analyzes the sound power captured by an acoustic beamformer on a defined spatial grid, estimating the source location as the point that maximizes the output power. Since localization accuracy can be improved by using high-resolution spatial grids and a high number of microphones, accurate acoustic localization systems require high computational power. Graphics Processing Units (GPUs) are highly parallel programmable co-processors that provide massive computation when the needed operations are properly parallelized. Emerging GPUs offer multiple parallelism levels; however, properly managing their computational resources becomes a very challenging task. In fact, management issues become even more difficult when multiple GPUs are involved, adding one more level of parallelism. In this paper, the performance of an acoustic source localization system using distributed microphones is analyzed over a massive multichannel processing framework in a multi-GPU system. The paper evaluates and points out the influence that the number of microphones and the available computational resources have in the overall system performance. Several acoustic environments are considered to show the impact that noise and reverberation have in the localization accuracy and how the use of massive microphone systems combined with parallelized GPU algorithms can help to mitigate substantially adverse acoustic effects. In this context, the proposed implementation is able to work in real time with high-resolution spatial grids and using up to 48 microphones. These results confirm the advantages of suitable GPU architectures in the development of real-time massive acoustic signal processing systems. (C) 20.15 Elsevier Ltd. All rights reserved.
机译:在涉及麦克风阵列的专家系统中,例如自动摄像机转向系统,人机交互,视频游戏或音频监视,声源定位是一个重要的主题。具有相位变换的转向响应功率(SRP-PHAT)算法是声源定位的一种众所周知的方法,因为它在嘈杂和混响环境中具有强大的性能。该算法分析声束形成器在定义的空间网格上捕获的声功率,将源位置估计为最大化输出功率的点。由于可以通过使用高分辨率空间网格和大量麦克风来提高定位精度,因此精确的声学定位系统需要较高的计算能力。图形处理单元(GPU)是高度并行的可编程协处理器,当所需的操作适当地并行化时,它们可以提供大量的计算。新兴的GPU提供了多个并行级别。但是,正确地管理其计算资源成为一项非常具有挑战性的任务。实际上,当涉及多个GPU时,管理问题将变得更加困难,从而增加了一层并行性。在本文中,在多GPU系统中的大型多通道处理框架上分析了使用分布式麦克风的声源定位系统的性能。本文评估并指出了麦克风数量和可用的计算资源对整个系统性能的影响。考虑了几种声学环境,以显示噪声和混响对定位精度的影响,以及将大型麦克风系统与并行GPU算法结合使用如何有助于减轻实质上的声学影响。在这种情况下,所提出的实施方案能够与高分辨率空间网格实时配合并使用多达48个麦克风。这些结果证实了合适的GPU架构在实时大规模声信号处理系统开发中的优势。 (C)20.15 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号