首页> 外文期刊>Expert Systems with Application >Self-adaptive attribute weighting for Naive Bayes classification
【24h】

Self-adaptive attribute weighting for Naive Bayes classification

机译:朴素贝叶斯分类的自适应属性加权

获取原文
获取原文并翻译 | 示例

摘要

Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance.
机译:朴素贝叶斯(NB)是一种流行的分类机器学习工具,由于其简单,高计算效率和良好的分类准确性,尤其是对于诸如文本之类的高维数据而言。实际上,NB的显着优势通常受到属性之间强烈的条件独立性假设的挑战,这可能会使分类性能恶化。因此,通过使用诸如结构扩展,属性选择,属性加权,实例加权,局部学习等方法,已经进行了许多努力来改善NB。在本文中,我们提出了一种新的基于人工免疫系统(AIS)的自适应贝叶斯分类的属性加权方法。所提出的方法,即AISWNB,利用人工免疫系统中的免疫理论来搜索最佳属性权重值,其中自调整权重值将减轻条件独立性假设并有助于准确地计算条件概率。 AISWNB的一项显着优势是,基于免疫系统的独特进化计算过程(包括初始化,克隆,片段和突变)确保AISWNB可以针对数据进行自我调整,而无需明确说明基础模型的功能或分布形式。结果,AISWNB在学习过程中可以获得良好的属性权重值。在36个机器学习基准数据集和六个图像分类数据集上进行的实验和比较表明,AISWNB在分类准确度,分类概率估计和分类排名性能方面显着优于同行。

著录项

  • 来源
    《Expert Systems with Application》 |2015年第3期|1487-1502|共16页
  • 作者单位

    School of Computer Science, China University of Geosciences, Wuhan 430074, China ,Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia;

    Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia;

    Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA;

    School of Computer Science, China University of Geosciences, Wuhan 430074, China;

    Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia;

    Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Naive Bayes; Self-adaptive; Attribute weighting; Artificial Immune Systems; Evolutionary computing;

    机译:朴素贝叶斯;自适应;属性权重;人工免疫系统;进化计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号