首页> 外文期刊>Expert Systems with Application >Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
【24h】

Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction

机译:基于几何均值的过采样增强算法可解决破产预测中的数据不平衡问题

获取原文
获取原文并翻译 | 示例

摘要

In classification or prediction tasks, data imbalance problem is frequently observed when most of instances belong to one majority class. Data imbalance problem has received considerable attention in machine learning community because it is one of the main causes that degrade the performance of classifiers or predictors. In this paper, we propose geometric mean based boosting algorithm (GMBoost) to resolve data imbalance problem. GMBoost enables learning with consideration of both majority and minority classes because it uses the geometric mean of both classes in error rate and accuracy calculation. To evaluate the performance of GMBoost, we have applied GMBoost to bankruptcy prediction task. The results and their comparative analysis with AdaBoost and cost-sensitive boosting indicate that GMBoost has the advantages of high prediction power and robust learning capability in imbalanced data as well as balanced data distribution.
机译:在分类或预测任务中,当大多数实例属于一个多数类时,经常会观察到数据不平衡的问题。数据不平衡问题在机器学习社区中引起了相当大的关注,因为它是降低分类器或预测器性能的主要原因之一。在本文中,我们提出了基于几何均值的提升算法(GMBoost)来解决数据不平衡问题。 GMBoost可以同时考虑多数和少数族裔,因为它在错误率和准确性计算中都使用了两种类别的几何平均值。为了评估GMBoost的性能,我们已将GMBoost应用于破产预测任务。结果及其与AdaBoost和对成本敏感的Boosting进行的比较分析表明,GMBoost在不平衡数据以及平衡数据分布方面具有较高的预测能力和强大的学习能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号