首页> 外文期刊>Expert Systems with Application >A collaborative filtering method for music recommendation using playing coefficients for artists and users
【24h】

A collaborative filtering method for music recommendation using playing coefficients for artists and users

机译:使用艺术家和用户播放系数的音乐推荐协作过滤方法

获取原文
获取原文并翻译 | 示例

摘要

The great quantity of music content available online has increased interest in music recommender systems. However, some important problems must be addressed in order to give reliable recommendations. Many approaches have been proposed to deal with cold-start and first-rater drawbacks; however, the problem of generating recommendations for gray-sheep users has been less studied. Most of the methods that address this problem are content-based, hence they require item information that is not always available. Another significant drawback is the difficulty in obtaining explicit feedback from users, necessary for inducing recommendation models, which causes the well-known sparsity problem. In this work, a recommendation method based on playing coefficients is proposed for addressing the above-mentioned shortcomings of recommender systems when little information is available. The results prove that this proposal outperforms other collaborative filtering methods, including those that make use of user attributes. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在线提供的大量音乐内容已引起人们对音乐推荐器系统的兴趣。但是,必须解决一些重要问题才能提供可靠的建议。已经提出了许多方法来解决冷启动和一流的缺点。但是,对灰羊用户生成推荐的问题的研究较少。解决此问题的大多数方法都是基于内容的,因此它们需要的信息并不总是可用的。另一个明显的缺点是难以从用户那里获得诱导模型的必要信息,这是众所周知的稀疏性问题。在这项工作中,提出了一种基于播放系数的推荐方法,以解决很少有可用信息时推荐系统的上述缺点。结果证明,该建议优于其他协作过滤方法,包括那些利用用户属性的方法。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号