首页> 外文期刊>Expert Systems with Application >An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
【24h】

An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals

机译:一种有效的自动化CAD诊断技术,使用灵活的分析小波变换和从HRV信号中提取的熵特征

获取原文
获取原文并翻译 | 示例

摘要

Coronary Artery Disease (CAD) causes maximum death among all types of heart disorders. An early detection of CAD can save many human lives. Therefore, we have developed a new technique which is capable of detecting CAD using the Heart Rate Variability (HRV) signals. These HRV signals are decomposed to sub-band signals using Flexible Analytic Wavelet Transform (FAWT). Then, two nonlinear parameters namely; K-Nearest Neighbour (K-NN) entropy estimator and Fuzzy Entropy (FzEn) are extracted from the decomposed sub-band signals. Ranking methods namely Wilcoxon, entropy, Receiver Operating Characteristic (ROC) and Bhattacharya space algorithm are implemented to optimize the performance of the designed system. The proposed methodology has shown better performance using entropy ranking technique. The Least Squares-Support Vector Machine (LS-SVM) with Morlet wavelet and Radial Basis Function (RBF) kernels obtained the highest classification accuracy of 100% for the diagnosis of CAD. The developed novel algorithm can be used to design an expert system for the diagnosis of CAD automatically using Heart Rate (HR) signals. Our system can be used in hospitals, polyclinics and community screening to aid the cardiologists in their regular diagnosis. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在所有类型的心脏病中,冠状动脉疾病(CAD)导致最大的死亡。尽早发现CAD可以挽救许多生命。因此,我们开发了一种能够使用心率变异性(HRV)信号检测CAD的新技术。使用可变分析小波变换(FAWT)将这些HRV信号分解为子带信号。然后,两个非线性参数分别为:从分解后的子带信号中提取K最近邻(K-NN)熵估计量和模糊熵(FzEn)。实施了排名方法,即Wilcoxon,熵,接收器工作特性(ROC)和Bhattacharya空间算法,以优化设计系统的性能。所提出的方法已经显示出使用熵排序技术的更好的性能。具有Morlet小波和径向基函数(RBF)核的最小二乘支持向量机(LS-SVM)在诊断CAD方面获得了100%的最高分类精度。所开发的新颖算法可用于设计专家系统,以使用心率(HR)信号自动诊断CAD。我们的系统可用于医院,综合诊所和社区筛查,以帮助心脏病专家进行常规诊断。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号