首页> 外文期刊>Expert Systems with Application >A survey on using domain and contextual knowledge for human activity recognition in video streams
【24h】

A survey on using domain and contextual knowledge for human activity recognition in video streams

机译:关于使用领域和上下文知识进行视频流中人类活动识别的调查

获取原文
获取原文并翻译 | 示例

摘要

Human activity recognition has gained an increasing relevance in computer vision and it can be tackled with either non-hierarchical or hierarchical approaches. The former, also known as single-layered approaches, are those that represent and recognize human activities directly from the extracted descriptors, building a model that distinguishes among the activities contained in the training data. The latter represent and recognize human activities in terms of subevents, which are usually recognized my means of single-layered approaches. Alongside of non-hierarchical and hierarchical approaches, we observe that methods incorporating a priori knowledge and context information on the activity are getting growing interest within the community. In this work we refer to this emerging trend in computer vision as knowledge-based human activity recognition with the objective to cover the lack of a summary of these methodologies. More specifically, we survey methods and techniques used in the literature to represent and integrate knowledge and reasoning into the recognition process. We categorize them as statistical approaches, syntactic approaches and description-based approaches. In addition, we further discuss public and private datasets used in this field to promote their use and to enable the interest readers in finding useful resources. This review ends proposing main future research directions in this field. (C) 2016 Elsevier Ltd. All rights reserved.
机译:人类活动识别在计算机视觉中的重要性越来越高,可以通过非分层方法或分层方法来解决。前者,也称为单层方法,是直接从提取的描述符中表示和识别人类活动的方法,建立了区分训练数据中包含的活动的模型。后者用子事件来表示和识别人类活动,而子事件通常被认为是我的单层方法。除了非分层和分层方法之外,我们还发现,结合了有关活动的先验知识和上下文信息的方法在社区中正变得越来越重要。在这项工作中,我们将计算机视觉的这种新兴趋势称为基于知识的人类活动识别,其目的是弥补对这些方法的概述的不足。更具体地说,我们调查了文献中用来表示和将知识和推理整合到识别过程中的方法和技术。我们将它们分为统计方法,句法方法和基于描述的方法。此外,我们进一步讨论了该领域中使用的公共和私有数据集,以促进其使用并使感兴趣的读者能够找到有用的资源。这篇综述结束了对该领域未来主要研究方向的建议。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号