首页> 外文期刊>Expert Systems with Application >Monochromatic and bichromatic reverse top-k group nearest neighbor queries
【24h】

Monochromatic and bichromatic reverse top-k group nearest neighbor queries

机译:单色和双色反向top-k组最近邻居查询

获取原文
获取原文并翻译 | 示例

摘要

The Group Nearest Neighbor (GNN) search is an important approach for expert and intelligent systems, i.e., Geographic Information System (GIS) and Decision Support System (DSS). However, traditional GNN search starts from users' perspective and selects the locations or objects that users like. Such applications fail to help the managers since they do not provide managerial insights. In this paper, we focus on solving the problem from the managers' perspective. In particular, we propose a novel GNN query, namely, the reverse top-k group nearest neighbor (RkGNN) query which returns k groups of data objects so that each group has the query object q as their group nearest neighbor (GNN). This query is an important tool for decision support, e.g., location-based service, product data analysis, trip planning, and disaster management because it provides data analysts an intuitive way for finding significant groups of data objects with respect to q. Despite their importance, this kind of queries has not received adequate attention from the research community and it is a challenging task to efficiently answer the RkGNN queries. To this end, we first formalize the reverse top-k group nearest neighbor query in both monochromatic and bichromatic cases, and then propose effective pruning methods, i.e., sorting and threshold pruning, MBR property pruning, and window pruning, to reduce the search space during the RkGNN query processing. Furthermore, we improve the performance by employing the reuse heap technique. As an extension to the RkGNN query, we also study an interesting variant of the RkGNN query, namely a constrained reverse top-k group nearest neighbor (CRkGN) query. Extensive experiments using synthetic and real datasets demonstrate the efficiency and effectiveness of our approaches. (C) 2016 Elsevier Ltd. All rights reserved.
机译:组最近邻居(GNN)搜索是专家和智能系统(即地理信息系统(GIS)和决策支持系统(DSS))的一种重要方法。但是,传统的GNN搜索从用户角度开始,然后选择用户喜欢的位置或对象。由于此类应用程序不提供管理见解,因此无法帮助管理人员。在本文中,我们专注于从管理者的角度解决问题。特别是,我们提出了一种新颖的GNN查询,即反向k组最近邻查询(RkGNN),该查询返回k组数据对象,以便每个组都将查询对象q作为其组最近邻(GNN)。此查询是决策支持的重要工具,例如基于位置的服务,产品数据分析,行程计划和灾难管理,因为它为数据分析人员提供了一种直观的方式来查找有关q的重要数据对象组。尽管它们很重要,但这种查询尚未得到研究界的足够重视,有效地回答RkGNN查询是一项艰巨的任务。为此,我们首先将单色和双色情况下的反向top-k组最近邻查询形式化,然后提出有效的修剪方法,即排序和阈值修剪,MBR属性修剪和窗口修剪,以减少搜索空间在RkGNN查询处理期间。此外,我们通过使用重用堆技术来提高性能。作为对RkGNN查询的扩展,我们还研究了RkGNN查询的一个有趣变体,即受约束的反向top-k组最近邻居(CRkGN)查询。使用合成和真实数据集进行的大量实验证明了我们方法的有效性和有效性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2016年第7期|57-74|共18页
  • 作者单位

    Jiaxing Univ, Coll Math Phys & Informat Engn, 56 Yuexiu Rd South, Jiaxing 314001, Peoples R China;

    Jiaxing Univ, Coll Math Phys & Informat Engn, 56 Yuexiu Rd South, Jiaxing 314001, Peoples R China;

    RMIT Univ, Sch Comp Sci & Informat Technol, Victoria 3001, Australia;

    Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R China;

    Jiaxing Univ, Coll Math Phys & Informat Engn, 56 Yuexiu Rd South, Jiaxing 314001, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Query processing; Group nearest neighbor; Top-k query; Spatial database;

    机译:查询处理;组最近邻居;Top-k查询;空间数据库;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号