首页> 外文期刊>Expert Systems with Application >Discrete particle swarm optimization method for the large-scale discrete time-cost trade-off problem
【24h】

Discrete particle swarm optimization method for the large-scale discrete time-cost trade-off problem

机译:离散离散时间-成本权衡问题的离散粒子群优化方法

获取原文
获取原文并翻译 | 示例

摘要

Despite many research studies have concentrated on designing heuristic and meta-heuristic methods for the discrete time-cost trade-off problem (DTCTP), very little success has been achieved in solving large-scale instances. This paper presents a discrete particle swarm optimization (DPSO) to achieve an effective method for the large-scale DTCTP. The proposed DPSO is based on the novel principles for representation, initialization and position-updating of the particles, and brings several benefits for solving the DTCTP, such as an adequate representation of the discrete search space, and enhanced optimization capabilities due to improved quality of the initial swarm. The computational experiment results reveal that the new method outperforms the state-of-the-art methods, both in terms of the solution quality and computation time, especially for medium and large-scale problems. High quality solutions with minor deviations from the global optima are achieved within seconds, for the first time for instances including up to 630 activities. The main contribution of the proposed particle swarm optimization method is that it provides high quality solutions for the time-cost optimization of large size projects within seconds, and enables optimal planning of real-life-size projects. (C) 2016 Elsevier Ltd. All rights reserved.
机译:尽管许多研究集中在为离散时间成本权衡问题(DTCTP)设计启发式方法和元启发式方法,但在解决大型实例方面却取得了很少的成功。本文提出了一种离散粒子群优化算法(DPSO),以实现大规模DTCTP的有效方法。提出的DPSO基于表示,初始化和位置更新粒子的新颖原理,并为解决DTCTP带来了许多好处,例如可以充分表示离散搜索空间,并且由于提高了质量而提高了优化能力。最初的一群。计算实验结果表明,无论是在解决方案质量还是计算时间上,新方法都优于最新方法,特别是对于中型和大型问题。几秒钟之内即可获得高质量的解决方案,与全局最优值的偏差很小,这是首次实例,包括多达630个活动。所提出的粒子群优化方法的主要贡献在于,它为大型项目的时间成本优化提供了数秒之内的高质量解决方案,并能够对实际大小的项目进行最佳规划。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号