首页> 外文期刊>Expert Systems with Application >Automatic understanding of sketch maps using context-aware classification
【24h】

Automatic understanding of sketch maps using context-aware classification

机译:使用上下文感知分类自动理解草图

获取原文
获取原文并翻译 | 示例

摘要

Sketching is a natural and easy way for humans to express visual information in everyday life. Despite a number of approaches to understand online sketch maps, the automatic understanding of offline, hand-drawn sketch maps still poses a problem. This paper presents a new approach for novel sketch map understanding. To our knowledge, this is the first comprehensive work dealing with this task in an offline way. This paper presents a system for automatic understanding of sketch maps and the underlying algorithms for all steps. Major parts are a region-growing segmentation for sketch map objects, a classification for isolated objects, and a context-aware classification. The context-aware classification uses probabilistic relaxation labeling to integrate dependencies between objects into the recognition. We show how these algorithms can deal with the major problems of sketch map understanding, such as vagueness in interpretation. Our experiments demonstrate the importance of context-aware classification for sketch map understanding. In addition, a new database of annotated sketch maps was developed and is made publicly available. This can be used for training and evaluation of sketch map understanding algorithms. (C) 2015 Elsevier Ltd. All rights reserved.
机译:草图绘制是人类在日常生活中表达视觉信息的一种自然而简便的方法。尽管有许多了解在线草图的方法,但是自动理解离线手绘草图仍然是一个问题。本文提出了一种新颖的草图理解方法。就我们所知,这是第一个以脱机方式处理此任务的全面工作。本文提出了一个自动理解草图的系统以及所有步骤的基础算法。主要部分是草图地图对象的区域增长分割,孤立对象的分类以及上下文感知分类。上下文感知分类使用概率松弛标记将对象之间的依赖项集成到识别中。我们将展示这些算法如何解决草图理解的主要问题,例如解释中的模糊性。我们的实验证明了上下文感知分类对于草图理解的重要性。此外,还开发了一个新的带有注释的草图图数据库,并可以公开使用。这可用于训练和评估草图理解算法。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号