首页> 外文期刊>Expert Systems with Application >A multiple fuzzy inference systems framework for daily stock trading with application to NASDAQ stock exchange
【24h】

A multiple fuzzy inference systems framework for daily stock trading with application to NASDAQ stock exchange

机译:每日股票交易的多重模糊推理系统框架及其在纳斯达克证券交易所的应用

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study is to develop an expert system for predicting daily trading decisions in a typical financial market environment. The developed system thus employs a Multiple FISs framework consisting of three dedicated FISs for stock trading decisions, Buy, Hold and Sell respectively. As input to the Multiple FISs framework, the system takes the fundamental information of the respective companies and the historical prices of the stocks which are processed to give the technical information. The framework suggests the investor to Buy, Sell or Hold on a daily basis for a portfolio of stock taken into consideration. Experimenting the framework on selected stocks of NASDAQ stock exchange shows that including the fundamental data of the stocks as input along with the technical data significantly improves the profit return than that of the system taking only technical information as input data. Characterised as a stock market indicator, the framework performs better than some of the most popularly used technical indicators such as Moving Average Convergence/Divergence (MACD), Relative Strength Index (RSI), Stochastic Oscillator (SO) and Chaikin Oscillator (CO). The developed framework also gives better profit return compared to an existing model with similar objective. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这项研究的目的是开发一个用于预测典型金融市场环境中日常交易决策的专家系统。因此,开发的系统采用了多个FIS框架,该框架由三个专用的FIS组成,分别用于股票交易决策(买入,持有和卖出)。作为对多个FIS框架的输入,系统将获取各个公司的基本信息以及经过处理以提供技术信息的股票的历史价格。该框架建议投资者每天考虑购买,出售或持有股票组合。对纳斯达克证券交易所选定股票进行的框架试验表明,与仅以技术信息为输入数据的系统相比,将股票的基本数据与技术数据一起输入可以显着提高利润回报。作为股票市场指标的特征,该框架的表现优于一些最常用的技术指标,例如移动平均线收敛/偏离(MACD),相对强度指数(RSI),随机震荡指标(SO)和柴金震荡指标(CO)。与具有类似目标的现有模型相比,开发的框架还可以提供更好的利润回报。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号