首页> 外文期刊>Expert Systems with Application >Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images
【24h】

Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images

机译:皮肤镜和标准图像中用于黑色素瘤皮肤癌检测的袋装纹理和颜色特征

获取原文
获取原文并翻译 | 示例

摘要

Early detection of malignant melanoma skin cancer is crucial for treating the disease and saving lives. Many computerized techniques have been reported in the literature to diagnose and classify the disease with satisfactory skin cancer detection performance. However, reducing the false detection rate is still challenging and preoccupying because false positives trigger the alarm and require intervention by an expert pathologist for further examination and screening. In this paper, an automatic skin cancer diagnosis system that combines different textural and color features is proposed. New textural and color features are used in a bag-of-features approach for efficient and accurate detection. We particularly claim that the Histogram of Gradients (HG) and the Histogram of Lines (HL) are more suitable for the analysis and classification of dermoscopic and standard skin images than the conventional Histogram of Oriented Gradient (HOG) and the Histogram of Oriented Lines (HOL), respectively. The HG and HL are bagged separately using a codebook for each and then combined with other bagged color vector angles and Zernike moments to exploit the color information. The overall system has been assessed through intensive experiments using different classifiers on a dermoscopic image dataset and another standard dataset. Experimental results have shown the superiority of the proposed system over state-of-the-art techniques. (C) 2017 Elsevier Ltd. All rights reserved.
机译:早期发现恶性黑色素瘤皮肤癌对于治疗该疾病和挽救生命至关重要。在文献中已经报道了许多计算机化技术,以令人满意的皮肤癌检测性能来诊断和分类该疾病。但是,降低误检率仍然是一项艰巨的任务,因为误报会触发警报,并且需要专业病理学家的干预才能进行进一步的检查和筛查。本文提出了一种结合了不同质地和颜色特征的皮肤癌自动诊断系统。新的纹理和颜色特征用于特征包方法中,可进行有效而准确的检测。我们特别主张,与常规的定向梯度直方图(HOG)和定向线直方图()相比,梯度直方图(HG)和线直方图(HL)更适合于皮肤镜和标准皮肤图像的分析和分类( HOL)。 HG和HL使用各自的密码本分别装袋,然后与其他装袋的颜色矢量角度和Zernike矩组合以利用颜色信息。通过在皮肤镜图像数据集和另一个标准数据集上使用不同的分类器,通过密集实验对整个系统进行了评估。实验结果表明,所提出的系统优于最新技术。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号