首页> 外文期刊>Expert Systems with Application >Content-based filtering for recommendation systems using multiattribute networks
【24h】

Content-based filtering for recommendation systems using multiattribute networks

机译:使用多属性网络的推荐系统基于内容的过滤

获取原文
获取原文并翻译 | 示例

摘要

Content-based filtering (CBF), one of the most successful recommendation techniques, is based on correlations between contents. CBF uses item information, represented as attributes, to calculate the similarities between items. In this study, we propose a novel CBF method that uses a multiattribute network to effectively reflect several attributes when calculating correlations to recommend items to users. In the network analysis, we measure the similarities between directly and indirectly linked items. Moreover, our proposed method employs centrality and clustering techniques to consider the mutual relationships among items, as well as determine the structural patterns of these interactions. This mechanism ensures that a variety of items are recommended to the user, which improves the performance. We compared the proposed approach with existing approaches using MovieLens data, and found that our approach outperformed existing methods in terms of accuracy and robustness. Our proposed method can address the sparsity problem and over-specialization problem that frequently affect recommender systems. Furthermore, the proposed method depends only on ratings data obtained from a user's own past information, and so it is not affected by the cold start problem. (C) 2017 Elsevier Ltd. All rights reserved.
机译:基于内容的过滤(CBF)是最成功的推荐技术之一,它基于内容之间的相关性。 CBF使用表示为属性的项目信息来计算项目之间的相似度。在这项研究中,我们提出了一种新颖的CBF方法,该方法使用多属性网络在计算相关性以向用户推荐商品时有效地反映多个属性。在网络分析中,我们测量直接和间接链接的项目之间的相似性。此外,我们提出的方法采用中心性和聚类技术来考虑项目之间的相互关系,并确定这些交互的结构模式。该机制确保向用户推荐各种项目,从而提高了性能。我们将建议的方法与使用MovieLens数据的现有方法进行了比较,发现在准确性和鲁棒性方面,我们的方法优于现有方法。我们提出的方法可以解决经常影响推荐系统的稀疏性问题和过度专业化问题。此外,所提出的方法仅取决于从用户自己过去的信息获得的等级数据,因此不受冷启动问题的影响。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号