首页> 外文期刊>Expert Systems with Application >Automated pathological brain detection system: A fast discrete curvelet transform and probabilistic neural network based approach
【24h】

Automated pathological brain detection system: A fast discrete curvelet transform and probabilistic neural network based approach

机译:自动化病理性脑部检测系统:基于快速离散Curvelet变换和概率神经网络的方法

获取原文
获取原文并翻译 | 示例

摘要

Computer-aided diagnosis (CAD) systems have drawn attention of researchers for arriving at qualitative and faster clinical decisions, and hence has become one of the most important directions of research. In this paper, we propose an efficient CAD system to classify pathological and healthy brains using brain MR images. The suggested pathological brain detection system (PBDS) has the ability to help radiologists to initiate the corrective measures for treating the ailing patients at an early stage. The proposed scheme uses a simplified pulse-coupled neural network (SPCNN) for the region of interest (ROI) segmentation and fast discrete curvelet transform (FDCT) for feature extraction. Subsequently, PCA+LDA approach is harnessed for feature dimensionality reduction and finally probabilistic neural network (PNN) is applied for classification. The scheme is validated on various standard datasets and compared with existing competent schemes with respect to classification accuracy and number of features. The statistical set up is kept similar as reported in the recent literature to derive an unbiased analysis. Experimental results demonstrate that the suggested scheme yields higher accuracy as compared to others with considerably less number of features. The number of parameters need to be tuned at different stages are significantly less in contrast to existing schemes. Further, PNN used has a simple network structure and offers faster learning speed. Therefore, the proposed scheme can effectively detect pathological brain in real-time and hence has a potential to be installed on medical robots. (C) 2017 Elsevier Ltd. All rights reserved.
机译:计算机辅助诊断(CAD)系统已引起研究人员的注意,以实现定性和更快的临床决策,因此已成为最重要的研究方向之一。在本文中,我们提出了一种有效的CAD系统,可以使用脑MR图像对病理和健康的大脑进行分类。建议的病理性脑部检测系统(PBDS)可以帮助放射科医生在早期阶段采取纠正措施来治疗患病的患者。所提出的方案使用简化的脉冲耦合神经网络(SPCNN)进行感兴趣区域(ROI)分割,并使用快速离散曲波变换(FDCT)进行特征提取。随后,利用PCA + LDA方法减少特征维数,最后将概率神经网络(PNN)用于分类。该方案已在各种标准数据集上进行了验证,并就分类精度和特征数量与现有的胜任方案进行了比较。统计设置与最近文献中报道的保持相似,以进行无偏分析。实验结果表明,与其他特征数量少得多的方案相比,所提出的方案具有更高的准确性。与现有方案相比,在不同阶段需要调整的参数数量明显更少。此外,使用的PNN具有简单的网络结构,并提供更快的学习速度。因此,提出的方案可以有效地实时检测病理性大脑,因此有可能被安装在医疗机器人上。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号