首页> 外文期刊>Expert Systems with Application >Intelligent driving methods based on expert knowledge and online optimization for high-speed trains
【24h】

Intelligent driving methods based on expert knowledge and online optimization for high-speed trains

机译:基于专家知识和在线优化的高速列车智能驾驶方法

获取原文
获取原文并翻译 | 示例

摘要

In the engineering control practice of High-Speed Train (HST), the traditional automatic driving method increases the energy consumption and impairs the intelligence of train operation. Different from previous studies, we propose the intelligent driving methods (IDMs), including expert knowledge system and online optimization algorithms, to achieve the multi-objective (safety, punctuality, energy efficient, passengers' riding comfort, and so on) control of HST. First, we establish the expert knowledge system based on the driving data and control rules of excellent drivers. Then, in order to enhance the adaptability and real-time performance of proposed IDMs, two online optimization algorithms, including exact online programming driving (EOPD) and inexact online programming driving (IOPD), are developed by improved gradient descent and stochastic meta-decent method to update the controller's output online. Finally, using the field data collected from Beijing-Shanghai High-Speed Railway, the proposed IDMs are verified under the real speed-limit conditions. The simulation results show that EOPD and IOPD can achieve better performances than automatic driving method based on ATO, Fuzzy PID controller and traditional multi-objective optimization method, especially in passengers' riding comfort and energy-consumption, Furthermore, as the step size is selected with wide randomness in the updating process, IOPD has more operating mode switching times than EOPD but its punctuality is better. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在高速列车(HST)的工程控制实践中,传统的自动驾驶方法会增加能耗,并损害列车运行的智能。与以往的研究不同,我们提出了智能驾驶方法(IDM),包括专家知识系统和在线优化算法,以实现HST的多目标(安全,准时,节能,乘客乘坐舒适度等)控制。首先,我们基于优秀驾驶员的驾驶数据和控制规则,建立专家知识系统。然后,为了增强所提出的IDM的适应性和实时性能,通过改进的梯度下降和随机元像元算法开发了两种在线优化算法,包括精确的在线编程驱动(EOPD)和不精确的在线编程驱动(IOPD)。在线更新控制器输出的方法。最后,利用从京沪高铁收集的现场数据,在实际限速条件下对提出的IDM进行了验证。仿真结果表明,与基于ATO,模糊PID控制器和传统多目标优化方法的自动驾驶方法相比,EOPD和IOPD的性能更好,特别是在乘客的乘坐舒适性和能耗方面。由于IOPD在更新过程中具有较大的随机性,因此其操作模式切换时间比EOPD多,但其守时性更好。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号