首页> 外文期刊>Expert Systems with Application >Social network analytics for churn prediction in telco: Model building, evaluation and network architecture
【24h】

Social network analytics for churn prediction in telco: Model building, evaluation and network architecture

机译:用于电信公司客户流失预测的社交网络分析:模型构建,评估和网络架构

获取原文
获取原文并翻译 | 示例

摘要

Social network analytics methods are being used in the telecommunication industry to predict customer churn with great success. In particular it has been shown that relational learners adapted to this specific problem enhance the performance of predictive models. In the current study we benchmark different strategies for constructing a relational learner by applying them to a total of eight distinct call-detail record datasets, originating from telecommunication organizations across the world. We statistically evaluate the effect of relational classifiers and collective inference methods on the predictive power of relational learners, as well as the performance of models where relational learners are combined with traditional methods of predicting customer churn in the telecommunication industry. Finally we investigate the effect of network construction on model performance; our findings imply that the definition of edges and weights in the network does have an impact on the results of the predictive models. As a result of the study, the best configuration is a non-relational learner enriched with network variables, without collective inference, using binary weights and undirected networks. In addition, we provide guidelines on how to apply social networks analytics for churn prediction in the telecommunication industry in an optimal way, ranging from network architecture to model building and evaluation. (C) 2017 Elsevier Ltd. All rights reserved.
机译:社交网络分析方法已在电信行业中用于预测客户流失并获得巨大成功。特别是,已经显示出适应该特定问题的关系学习者可以提高预测模型的性能。在当前的研究中,我们通过将它们应用于来自全球电信组织的总共八个不同的呼叫详细记录数据集,对构建关系学习者的不同策略进行了基准测试。我们从统计角度评估关系分类器和集体推断方法对关系学习者的预测能力的影响,以及关系学习者与传统的预测电信业客户流失方法相结合的模型的性能。最后,我们研究了网络构建对模型性能的影响;我们的发现表明,网络中边和权重的定义确实会对预测模型的结果产生影响。这项研究的结果是,最佳配置是使用二进制权重和无向网络的非关系型学习器,该学习器在没有集体推断的情况下会丰富网络变量。此外,我们提供了有关如何以最佳方式将社交网络分析应用于电信行业客户流失预测的指南,范围从网络架构到模型构建和评估。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号