首页> 外文期刊>Expert Systems with Application >Rank aggregation methods dealing with ordinal uncertain preferences
【24h】

Rank aggregation methods dealing with ordinal uncertain preferences

机译:排序不确定性偏好的秩聚合方法

获取原文
获取原文并翻译 | 示例

摘要

The problem of rank aggregation, also known as group-ranking, arises in many fields such as metasearch engines, information retrieval, recommendation systems and multicriteria decision-making. Given a set of alternatives, the problem is to order the alternatives based on ordinal rankings provided by a group of individual experts. The available information is often limited and uncertain in real-world applications. This paper addresses the general group-ranking problem using interval ordinal data as a flexible way to capture uncertain and incomplete information. We propose a two-stage approach. The first stage learns an aggregate preference matrix as a means of gathering group preferences from uncertain and possibly conflicting information. In the second stage, priority vectors are derived from the aggregate preference matrix based on properties of fuzzy preference relations and graph theory. Our approach provides a theoretical framework for studying the problem that extends some of the methods in the literature, efficient computational methods to solve the problem and some performance measures. It relaxes data certainty and completeness assumptions and overcomes some shortcomings of current group-ranking methods. (C) 2017 Elsevier Ltd. All rights reserved.
机译:排名汇总问题(也称为小组排名)出现在许多领域,例如元搜索引擎,信息检索,推荐系统和多准则决策。给定一组替代方案,问题在于根据一组单独专家提供的有序排名对替代方案进行排序。在实际应用中,可用信息通常是有限且不确定的。本文使用间隔序数数据作为捕获不确定和不完整信息的灵活方法来解决一般的组排名问题。我们提出了一种两阶段的方法。第一阶段学习汇总偏好矩阵,作为从不确定和可能冲突的信息中收集组偏好的一种方法。在第二阶段,基于模糊偏好关系和图论的性质,从聚合偏好矩阵中导出优先级向量。我们的方法为研究问题提供了理论框架,扩展了文献中的某些方法,解决该问题的有效计算方法以及一些性能指标。它放宽了数据确定性和完整性假设,并克服了当前组排名方法的一些缺点。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号