首页> 外文期刊>Expert Systems with Application >A full ranking methodology in data envelopment analysis based on a set of dummy decision making units
【24h】

A full ranking methodology in data envelopment analysis based on a set of dummy decision making units

机译:基于一组虚拟决策单元的数据包络分析的完整排名方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new methodology for ranking decision making units in data envelopment analysis (DEA). Our approach is a benchmarking method, seeks a common set of weights using a proposed linear programming model and is based on the TOPSIS approach in multiple attribute decision making (MADM). To this end, five artificial or dummy decision making units (DMUs) are defined, the ideal DMU (IDMU), the anti-ideal DMU (ADMU), the right ideal DMU (RIDMU), the left anti-ideal DMU (LADMU) and the average DMU (AVDMU). We form two comprehensive indexes for the AVDMU called the Left Relative Closeness (LRC) and the Right Relative Closeness (RRC) with respect to the RIDMU and LADMU. The LRC and RRC indexes will be used in the new proposed linear programming model to estimate the common set of weights, the new efficiency of DMUs and finally an overall ranking for all the DMUs. The change of the ratio between LRC and RRC indexes is capable to be provoked alternative rankings. One of the best advantages of this model is that we can make a rationale ranking which is demonstrated by the realized correlation analysis. Also, the new proposed efficiency score of the DMUs is close to the efficiency score of the DEA (CCR) methodology. Three numerical examples are provided to illustrate the applicability of the new approach and the effectiveness of the new approach in DEA ranking in comparison with other conventional ranking methods. Also, an "error" analysis proves the robustness of the proposed methodology. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了一种用于对数据包络分析(DEA)中的决策单位进行排名的新方法。我们的方法是一种基准测试方法,使用提出的线性规划模型来寻求一组通用的权重,并且基于多属性决策(MADM)中的TOPSIS方法。为此,定义了五个人工或虚拟决策单元(DMU),理想DMU(IDMU),反理想DMU(ADMU),右理想DMU(RIDMU),左反理想DMU(LADMU)和平均DMU(AVDMU)。对于RIDMU和LADMU,我们为AVDMU形成了两个综合指标,称为左相对亲和度(LRC)和右相对亲和度(RRC)。 LRC和RRC索引将用于新提议的线性规划模型中,以评估通用权重集,DMU的新效率以及最终所有DMU的总体排名。 LRC和RRC指标之间的比率变化可以引起替代排名。该模型的最大优点之一是,我们可以对基本原理进行排名,这可以通过已实现的相关性分析来证明。同样,新提议的DMU效率得分也接近DEA(CCR)方法的效率得分。提供了三个数值示例,以说明与其他常规排名方法相比,该新方法在DEA排名中的适用性和有效性。同样,“错误”分析证明了所提出方法的鲁棒性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号