首页> 外文期刊>Expert Systems with Application >Deep learning for decentralized parking lot occupancy detection
【24h】

Deep learning for decentralized parking lot occupancy detection

机译:深度学习用于分散式停车场占用率检测

获取原文
获取原文并翻译 | 示例

摘要

A smart camera is a vision system capable of extracting application-specific information from the captured images. The paper proposes a decentralized and efficient solution for visual parking lot occupancy detection based on a deep Convolutional Neural Network (CNN) specifically designed for smart cameras. This solution is compared with state-of-the-art approaches using two visual datasets: PKLot, already existing in literature, and CNRParlc-EXT. The former is an existing dataset, that allowed us to exhaustively compare with previous works. The latter dataset has been created in the context of this research, accumulating data across various seasons of the year, to test our approach in particularly challenging situations, exhibiting occlusions, and diverse and difficult viewpoints. This dataset is public available to the scientific community and is another contribution of our research. Our experiments show that our solution outperforms and generalizes the best performing approaches on both datasets. The performance of our proposed CNN architecture on the parking lot occupancy detection task, is comparable to the well-known AlexNet, which is three orders of magnitude larger. (C) 2016 Elsevier Ltd. All rights reserved.
机译:智能相机是一种视觉系统,能够从捕获的图像中提取特定于应用程序的信息。本文针对专门为智能相机设计的深度卷积神经网络(CNN),提出了一种分散,高效的视觉停车场占用检测解决方案。使用两个可视数据集将该解决方案与最新方法进行了比较:文献中已经存在的PKLot和CNRParlc-EXT。前者是一个现有的数据集,它使我们能够与以前的作品进行详尽的比较。后一个数据集是在此研究的背景下创建的,它收集了一年中各个季节的数据,以测试我们的方法在特别具有挑战性的情况下,出现遮挡以及各种困难的观点。该数据集可供科学界公开使用,是我们研究的另一贡献。我们的实验表明,我们的解决方案在这两个数据集上的表现均优于并概括了性能最佳的方法。我们提出的CNN架构在停车场占用检测任务上的性能可与著名的AlexNet相媲美,后者要大三个数量级。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号