首页> 外文期刊>Expert Systems with Application >Attribute clustering using rough set theory for feature selection in fault severity classification of rotating machinery
【24h】

Attribute clustering using rough set theory for feature selection in fault severity classification of rotating machinery

机译:基于粗糙集理论的旋转机械故障严重性分类中的特征选择特征聚类

获取原文
获取原文并翻译 | 示例

摘要

Features extracted from real world applications increase dramatically, while machine learning methods decrease their performance given the previous scenario, and feature reduction is required. Particularly, for fault diagnosis in rotating machinery, the number of extracted features are sizable in order to collect all the available information from several monitored signals. Several approaches lead to data reduction using supervised or unsupervised strategies, where the supervised ones are the most reliable and its main disadvantage is the beforehand knowledge of the fault condition. This work proposes a new unsupervised algorithm for feature selection based on attribute clustering and rough set theory. Rough set theory is used to compute similarities between features through the relative dependency. The clustering approach combines classification based on distance with clustering based on prototype to group similar features, without requiring the number of clusters as an input. Additionally, the algorithm has an evolving property that allows the dynamic adjustment of the cluster structure during the clustering process, even when a new set of attributes feeds the algorithm, That gives to the algorithm an incremental learning property, avoiding a retraining process. These properties define the main contribution and significance of the proposed algorithm. Two fault diagnosis problems of fault severity classification in gears and bearings are studied to test the algorithm. Classification results show that the proposed algorithm is able to select adequate features as accurate as other feature selection and reduction approaches. (C) 2016 Elsevier Ltd. All rights reserved.
机译:从实际应用程序中提取的功能会急剧增加,而在以前的情况下,机器学习方法会降低其性能,因此需要减少功能。特别地,对于旋转机械中的故障诊断,提取特征的数量是相当大的,以便从多个监视信号中收集所有可用信息。有几种方法可以使用有监督或无监督策略来减少数据,其中受监督策略最可靠,其主要缺点是对故障状况的事先了解。这项工作提出了一种新的基于属性聚类和粗糙集理论的无监督特征选择算法。粗糙集理论用于通过相对依赖性来计算特征之间的相似度。聚类方法将基于距离的分类与基于原型的聚类相结合,以对相似特征进行分组,而无需输入聚类数。此外,该算法具有不断发展的属性,即使在一组新属性为算法提供服务时,它也可以在聚类过程中动态调整聚类结构,从而为算法提供了增量学习属性,从而避免了重新训练过程。这些属性定义了所提出算法的主要贡献和意义。研究了齿轮和轴承故障严重性分类的两个故障诊断问题,对算法进行了测试。分类结果表明,该算法能够选择与其他特征选择和归约方法一样准确的适当特征。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号