首页> 外文期刊>Expert Systems with Application >Clustering stock price time series data to generate stock trading recommendations: An empirical study
【24h】

Clustering stock price time series data to generate stock trading recommendations: An empirical study

机译:实证研究:对股票价格时间序列数据进行聚类以产生股票交易建议

获取原文
获取原文并翻译 | 示例

摘要

Predicting the stock market is considered to be a very difficult task due to its non-linear and dynamic nature. Our proposed system is designed in such a way that even a layman can use it. It reduces the burden on the user. The user's job is to give only the recent closing prices of a stock as input and the proposed Recommender system will instruct him when to buy and when to sell if it is profitable or not to buy share in case if it is not profitable to do trading. Using soft computing based techniques is considered to be more suitable for predicting trends in stock market where the data is chaotic and large in number. The soft computing based systems are capable of extracting relevant information from large sets of data by discovering hidden patterns in the data. Here regression trees are used for dimensionality reduction and clustering is done with the help of Self Organizing Maps (SOM). The proposed system is designed to assist stock market investors identify possible profit-making opportunities and also help in developing a better understanding on how to extract the relevant information from stock price data. (C) 2016 Elsevier Ltd. All rights reserved.
机译:由于其非线性和动态的性质,预测股票市场被认为是一项非常艰巨的任务。我们提出的系统的设计方式使得即使是外行也可以使用它。它减轻了用户的负担。用户的工作是仅提供股票的最近收盘价作为输入,并且建议的推荐系统将指导他何时买卖,何时卖出(如果该股有利可图)或不购买股票(以防万一进行交易时无利可图) 。使用基于软计算的技术被认为更适合预测数据混乱且数量众多的股市趋势。基于软计算的系统能够通过发现数据中的隐藏模式来从大量数据中提取相关信息。在这里,回归树用于降维,并且在自组织图(SOM)的帮助下完成了聚类。拟议中的系统旨在帮助股票市场投资者识别可能的获利机会,也有助于更好地理解如何从股票价格数据中提取相关信息。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2017年第3期|20-36|共17页
  • 作者单位

    Amrita Univ, Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India;

    Amrita Univ, Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India;

    Amrita Univ, Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Mech Engn, Coimbatore, Tamil Nadu, India;

    Amrita Univ, Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stock; Trading; Recommender; Clustering; Time-series;

    机译:股票;交易;推荐人;聚类;时间序列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号