首页> 外文期刊>Expert Systems with Application >Reinforcement learning approaches for specifying ordering policies of perishable inventory systems
【24h】

Reinforcement learning approaches for specifying ordering policies of perishable inventory systems

机译:加强学习方法,用于指定易腐库存系统的订购策略

获取原文
获取原文并翻译 | 示例

摘要

In this study, we deal with the inventory management system of perishable products under the random demand and deterministic lead time in order to minimize the total cost of a retailer. We investigate two different ordering policies to emphasize the importance of the age information in the perishable inventory systems using Reinforcement Learning (RL). Stock-based policy replenishes stocks according to the stock quantities, and Age-based policy considers both inventory level and the age of the items in stock. The problem considered in this article has been modeled using Reinforcement Learning and the policies are optimized using Q-learning and Sarsa algorithms. The performance of the proposed policies compared with similar policies from the literature. The experiments demonstrate that the ordering policy which takes into account the age information appears to be an acceptable policy and learning with RL provides better results when demand has high variance and products has short lifetimes. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本研究中,我们处理具有随机需求和确定提前期的易腐产品的库存管理系统,以最大程度地降低零售商的总成本。我们研究了两种不同的订购策略,以强调使用强化学习(RL)在易腐库存系统中使用年龄信息的重要性。基于库存的策略根据库存数量补充库存,基于年龄的策略同时考虑库存水平和库存物料的寿命。本文考虑的问题已使用强化学习进行了建模,并且使用Q学习和Sarsa算法对策略进行了优化。与文献中的类似政策相比,拟议政策的绩效。实验表明,考虑到年龄信息的订购策略似乎是可以接受的策略,并且当需求变化很大且产品寿命短时,通过RL学习可以提供更好的结果。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号