首页> 外文期刊>Expert Systems with Application >Forecasting stock market crisis events using deep and statistical machine learning techniques
【24h】

Forecasting stock market crisis events using deep and statistical machine learning techniques

机译:使用深度和统计机器学习技术预测股市危机事件

获取原文
获取原文并翻译 | 示例

摘要

This work contributes to this ongoing debate on the nature and the characteristics of propagation channels of crash events in international stock markets. Specifically, we investigate transmission mechanisms across stock markets along with effects from bond and currency markets. Our approach comprises a solid forecasting mechanism of the probability of a stock market crash event in various time frames. The developed approach combines different machine learning algorithms which are presented with daily stock, bond and currency data from 39 countries that cover a large spectrum of economies. Specifically, we leverage the merits of a series of techniques including Classification Trees, Support Vector Machines, Random Forests, Neural Networks, Extreme Gradient Boosting, and Deep Neural Networks. To the best of our knowledge, this is the first time that Deep Learning and Boosting approaches are considered in the literature as a means of predicting stock market crisis episodes. The independent variables included in our data contain information regarding both the two fundamental linkage channels through which financial contagion can be initiated: returns and volatility. We apply a suite of machine learning algorithms for selecting the most relevant variables out of a large set of proposed ones. Finally, we employ bootstrap sampling for adjusting the imbalanced nature of the available fitting dataset. Our experimental results provide strong evidence that stock market crises tend to exhibit persistence. We also find significant evidence of interdependence and cross-contagion effects among stock, bond and currency markets. Finally, we show that the use of Deep Neural Networks significantly increases the classification accuracy, while offering a robust way to create a global systemic early warning tool that is more efficient and risk-sensitive than the currently established ones. Thus, central banks may use these tools to early adjust their monetary policy, so as to ensure financial stability.
机译:这项工作促进了有关国际股票市场碰撞事件传播渠道的性质和特征的持续辩论。具体来说,我们研究了股票市场之间的传导机制以及债券和货币市场的影响。我们的方法包括在各种时间范围内对股票市场崩溃事件发生概率的可靠预测机制。所开发的方法结合了不同的机器学习算法,并与来自39个国家/地区的每日股票,债券和货币数据进行了比较,涵盖了广泛的经济领域。具体来说,我们利用了一系列技术的优点,包括分类树,支持向量机,随机森林,神经网络,极端梯度增强和深度神经网络。据我们所知,这是文献中首次将深度学习和增强方法作为预测股市危机事件的一种手段。我们数据中包含的独立变量包含有关两个基本联系渠道的信息,通过这些渠道可以引发金融危机蔓延:回报和波动。我们应用了一套机器学习算法,用于从大量建议的变量中选择最相关的变量。最后,我们采用自举抽样来调整可用拟合数据集的不平衡性质。我们的实验结果提供了有力的证据,证明股市危机倾向于持续存在。我们还发现股票,债券和货币市场之间存在相互依存和交叉传染效应的重要证据。最后,我们证明了使用深度神经网络可以显着提高分类的准确性,同时提供了一种可靠的方式来创建一种全球性的系统预警工具,该工具比当前建立的预警工具更加有效和风险敏感。因此,中央银行可以使用这些工具及早调整其货币政策,以确保金融稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号