首页> 外文期刊>Expert Systems with Application >A user similarity-based Top-N recommendation approach for mobile in-application advertising
【24h】

A user similarity-based Top-N recommendation approach for mobile in-application advertising

机译:移动应用内广告的基于用户相似度的Top-N推荐方法

获取原文
获取原文并翻译 | 示例

摘要

Ensuring scalability of recommender systems without sacrificing the quality of the recommendations produced, presents significant challenges, especially in the large-scale, real-world setting of mobile ad targeting. In this paper, we propose MobRec, a novel two-stage user similarity based approach to recommendation which combines information provided by slowly-changing features of the mobile context and implicit user feedback indicative of user preferences. MobRec uses the contextual features to cluster, during an off-line stage, users that share similar patterns of mobile behavior. In the online stage, MobRec focuses on the cluster consisting of users that are most similar to the target user in terms of their contextual features as well as implicit feedback. MobRec also employs a novel strategy for robust estimation of user preferences from noisy clicks. Results of experiments using a large-scale real-world mobile advertising dataset demonstrate that MobRec outperforms the state-of-the-art neighborhood-based as well as latent factor-based recommender systems, in terms of both scalability and the quality of the recommendations.
机译:确保推荐系统的可扩展性而不牺牲所生成推荐的质量,这带来了巨大的挑战,尤其是在大规模,真实世界的移动广告定位设置中。在本文中,我们提出MobRec,这是一种新颖的基于两阶段用户相似度的推荐方法,该方法结合了由移动上下文的缓慢变化特征提供的信息和指示用户偏好的隐式用户反馈。 MobRec使用上下文功能在离线阶段将共享相似移动行为模式的用户聚类。在在线阶段,MobRec专注于集群,其中包括就上下文特征和隐式反馈而言与目标用户最相似的用户。 MobRec还采用了一种新颖的策略,可以从嘈杂的点击中可靠地估算用户的偏好。使用大规模现实世界移动广告数据集的实验结果表明,MobRec在可扩展性和推荐质量方面均胜过基于最新的邻域和基于潜在因子的推荐系统。

著录项

  • 来源
    《Expert Systems with Application》 |2018年第11期|51-60|共10页
  • 作者单位

    School of Computer Science and Engineering, South China University of Technology,Guangdong Key Laboratory of Communication and Computer Network, South China University of Technology;

    School of Computer Science and Engineering, South China University of Technology,Guangdong Key Laboratory of Communication and Computer Network, South China University of Technology,Artificial Intelligence Research Laboratory, College of Information Sciences and Technology, Pennsylvania State University, University Park;

    School of Computer Science and Engineering, South China University of Technology,Guangdong Key Laboratory of Communication and Computer Network, South China University of Technology;

    Artificial Intelligence Research Laboratory, College of Information Sciences and Technology, Pennsylvania State University, University Park;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Neighborhood-based recommendation; User similarity; Top-Npreference; Mobile in-application advertising;

    机译:基于邻域的推荐;用户相似度;Top-Npreference;移动应用内广告;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号