首页> 外文期刊>Expert Systems with Application >The α-reliable path problem in stochastic road networks with link correlations: A moment-matching-based path finding algorithm
【24h】

The α-reliable path problem in stochastic road networks with link correlations: A moment-matching-based path finding algorithm

机译:具有链接相关性的随机道路网中的α可靠路径问题:基于矩匹配的路径寻找算法

获取原文
获取原文并翻译 | 示例

摘要

Most existing studies on routing guidance only paid attention to the average path travel time, which failed to consider travel time reliability (TTR) preferences by different travelers. In this study, a momentmatching-based hybrid genetic algorithm (MHGA) is proposed to search the reliable shortest path (RSP) in stochastic road networks with link correlations. First, the goodness-of-fit results based on field data reveal that lognormal distributions are more appropriate for characterizing link travel times. The impact of topological distance (measured by the number of links) and road type on link correlations is also scrutinized. Then, a moment-matching method (MOM) is utilized to determine the parameters of the approximate path travel time distribution (TTD) by accounting for link correlations. A local search algorithm is designed to improve the search ability of the path finding algorithm. In view of travelers' risk tolerance, the algorithm enables the provision of personalized routing guidance for individual travelers. Furthermore, to support path finding applications in a large-scale network, heuristic constraints are imposed to help reduce the computational workload and accelerate the convergence speed of the search process. Finally, numerical case studies based on synthetic networks and a real road network in Beijing are presented, and the results help demonstrate that the algorithm has good potential to solve RSP searching problems in a large-scale network with desirable efficiency. (C) 2018 Elsevier Ltd. All rights reserved.
机译:现有的大多数关于路线引导的研究都只关注平均路径旅行时间,而没有考虑不同旅行者的旅行时间可靠性(TTR)偏好。在这项研究中,提出了一种基于矩匹配的混合遗传算法(MHGA)来搜索具有链接相关性的随机道路网络中的可靠最短路径(RSP)。首先,基于现场数据的拟合优度结果表明,对数正态分布更适合于表征链接的行进时间。还仔细研究了拓扑距离(由路段数量衡量)和道路类型对路段相关性的影响。然后,利用力矩匹配方法(MOM)通过考虑链路相关性来确定近似路径行进时间分布(TTD)的参数。设计局部搜索算法以提高路径查找算法的搜索能力。考虑到旅行者的风险承受能力,该算法可以为单个旅行者提供个性化的路线指引。此外,为了支持大规模网络中的路径查找应用程序,施加了启发式约束条件以帮助减少计算工作量并加快搜索过程的收敛速度。最后,对基于合成网络和北京真实道路网络的数值案例进行了研究,结果表明该算法具有很好的潜力,能够以理想的效率解决大规模网络中的RSP搜索问题。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号