首页> 外文期刊>Expert Systems with Application >Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study
【24h】

Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study

机译:随机森林案例研究的实验和响应面方法设计,用于调整机器学习超参数

获取原文
获取原文并翻译 | 示例

摘要

Most machine learning algorithms possess hyperparameters. For example, an artificial neural network requires the determination of the number of hidden layers, nodes, and many other parameters related to the model fitting process. Despite this, there is still no clear consensus on how to tune them. The most popular methodology is an exhaustive grid search, which can be highly inefficient and sometimes infeasible. Another common solution is to change one hyperparameter at a time and measure its effect on the model's performance. However, this can also be inefficient and does not guarantee optimal results since it ignores interactions between the hyperparameters. In this paper, we propose to use the Design of Experiments (DOE) methodology (factorial designs) for screening and Response Surface Methodology (RSM) to tune a machine learning algorithm's hyperparameters. An application of our methodology is presented with a detailed discussion of the results of a random forest case-study using a publicly available dataset. Benefits include fewer training runs, better parameter selection, and a disciplined approach based on statistical theory. (C) 2018 Elsevier Ltd. All rights reserved.
机译:大多数机器学习算法都具有超参数。例如,人工神经网络需要确定隐藏层,节点的数量以及与模型拟合过程相关的许多其他参数。尽管如此,关于如何调整它们仍未达成明确共识。最受欢迎的方法是穷举网格搜索,这种搜索效率极低,有时甚至不可行。另一个常见的解决方案是一次更改一个超参数,并测量其对模型性能的影响。但是,由于它忽略了超参数之间的相互作用,因此效率也很低,并且不能保证最佳结果。在本文中,我们建议使用用于筛选的实验设计(DOE)方法(因子设计)和响应面方法(RSM)来调整机器学习算法的超参数。使用公开可用的数据集,对随机森林案例研究的结果进行了详细讨论,从而介绍了我们方法的应用。好处包括更少的训练次数,更好的参数选择以及基于统计理论的规范方法。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号