首页> 外文期刊>Expert Systems with Application >Study of data transformation techniques for adapting single-label prototype selection algorithms to multi-label learning
【24h】

Study of data transformation techniques for adapting single-label prototype selection algorithms to multi-label learning

机译:用于使单标签原型选择算法适应多标签学习的数据转换技术的研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the focus is on the application of prototype selection to multi-label data sets as a preliminary stage in the learning process. There are two general strategies when designing Machine Learning algorithms that are capable of dealing with multi-label problems: data transformation and method adaptation. These strategies have been successfully applied in obtaining classifiers and regressors for multi label learning. Here we investigate the feasibility of data transformation in obtaining prototype selection algorithms for multi-label data sets from three prototype selection algorithms for single-label. The data transformation methods used were: binary relevance, dependent binary relevance, label powerset, and random k-labelsets. The general conclusion is that the methods of prototype selection obtained using data transformation are not better than those obtained through method adaptation. Moreover, prototype selection algorithms designed for multi-label do not do an entirely satisfactory job, because, although they reduce the size of the data set, without affecting significantly the accuracy, the classifier trained with the reduced data set does not improve the accuracy of the classifier when it is trained with the whole data set. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,重点是将原型选择应用于多标签数据集,作为学习过程的初步阶段。设计能够处理多标签问题的机器学习算法时,有两种通用策略:数据转换和方法适应。这些策略已成功应用于获取用于多标签学习的分类器和回归器。在这里,我们研究了从三种用于单标签的原型选择算法中获取多标签数据集的原型选择算法中数据转换的可行性。所使用的数据转换方法为:二进制相关性,相关二进制相关性,标签功效集和随机k标签集。总的结论是,使用数据转换获得的原型选择方法并不比通过方法适应获得的方法更好。而且,专为多标签设计的原型选择算法不能完全令人满意,因为尽管它们虽然减小了数据集的大小,但没有显着影响准确性,但是使用减少的数据集训练的分类器却无法提高分类的准确性。使用整个数据集训练分类器时。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号