首页> 外文期刊>Expert Systems with Application >Part-based vehicle detection in side-rectilinear images for blind-spot detection
【24h】

Part-based vehicle detection in side-rectilinear images for blind-spot detection

机译:侧直线图像中基于零件的车辆检测用于盲点检测

获取原文
获取原文并翻译 | 示例

摘要

The blind-spot detection (BSD) system is designed to prevent accidents during lane changing and overtaking scenarios. Current BSD systems that use side- or rear-view cameras suffer from limited performance because of the severe distortion in the appearance of nearby vehicles depending on their positions relative to the host vehicle. To overcome such limitations, this manuscript introduces a side-rectilinear image to detect and use the side parts of the vehicles. In the side-rectilinear image, the side parts of the vehicles do not contain radial or perspective distortions; consequently, the appearance of the tires remains identical from different positions on the vehicle. By utilizing this rectilinear image, a rear-camera-based BSD system that detects both vehicles and motorcycles is constructed to prevent possible accidents occurring in blind spots. The proposed BSD system detects the vehicles in three stages: tire hypothesis generation/verification, front-rear tire classification, and vehicle hypothesis generation/verification. For motorcycle detection, the proposed system detects the lower parts of the motorcycle, which are not affected by the appearance of the drivers and cargos. Using the property of the side-rectilinear image, the detection procedures of the proposed system are straight-forward and resemble the object detection recognition rules of humans. Based on the detection results, the system tracks nearby vehicles and gives a warning signal to the driver when there are obstacles in blind spots. An evaluation of the system performance demonstrates that the warning rate of the proposed system outperforms that of radar-based systems. (C) 2018 Elsevier Ltd. All rights reserved.
机译:盲点检测(BSD)系统旨在防止在变道和超车场景中发生事故。当前的使用后视或后视摄像机的BSD系统的性能受到限制,因为附近车辆的外观严重变形,具体取决于它们相对于主车辆的位置。为了克服这些限制,该手稿引入了一个侧面直线图像来检测和使用车辆的侧面部分。在侧面直线图像中,车辆的侧面部分不包含径向或透视变形。因此,轮胎的外观从车辆上的不同位置保持相同。通过利用此直线图像,可以构造一个同时检测车辆和摩托车的基于后置摄像头的BSD系统,以防止在盲区发生事故。提出的BSD系统在三个阶段检测车辆:轮胎假设生成/验证,前后轮胎分类以及车辆假设生成/验证。对于摩托车检测,建议的系统检测摩托车下部,不受驾驶员和货物外观的影响。利用侧面直线图像的性质,所提出的系统的检测过程很简单,很像人类的物体检测识别规则。根据检测结果,系统会跟踪附近的车辆并在盲区中有障碍物时向驾驶员发出警告信号。对系统性能的评估表明,所提出系统的警告率优于基于雷达的系统。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号