首页> 外文期刊>Experiments in Fluids >Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer
【24h】

Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer

机译:使用数字全息显微镜同时测量湍流边界层中的3D近壁速度和壁切应力

获取原文
获取原文并翻译 | 示例

摘要

A digital holographic microscope is used to simultaneously measure the instantaneous 3D flow structure in the inner part of a turbulent boundary layer over a smooth wall, and the spatial distribution of wall shear stresses. The measurements are performed in a fully developed turbulent channel flow within square duct, at a moderately high Reynolds number. The sample volume size is 90 × 145 × 90 wall units, and the spatial resolution of the measurements is 3–8 wall units in streamwise and spanwise directions and one wall unit in the wall-normal direction. The paper describes the data acquisition and analysis procedures, including the particle tracking method and associated method for matching of particle pairs. The uncertainty in velocity is estimated to be better than 1 mm/s, less than 0.05% of the free stream velocity, by comparing the statistics of the normalized velocity divergence to divergence obtained by randomly adding an error of 1 mm/s to the data. Spatial distributions of wall shear stresses are approximated with the least square fit of velocity measurements in the viscous sublayer. Mean flow profiles and statistics of velocity fluctuations agree very well with expectations. Joint probability density distributions of instantaneous spanwise and streamwise wall shear stresses demonstrate the significance of near-wall coherent structures. The near wall 3D flow structures are classified into three groups, the first containing a pair of counter-rotating, quasi streamwise vortices and high streak-like shear stresses; the second group is characterized by multiple streamwise vortices and little variations in wall stress; and the third group has no buffer layer structures.
机译:数字全息显微镜用于同时测量光滑壁上湍流边界层内部的瞬时3D流结构以及壁切应力的空间分布。测量是在方管内完全展开的湍流通道中进行的,雷诺数较高。样本体积大小为90×145×90墙单位,测量的空间分辨率在流向和展向方向上为3–8个墙单位,而在墙法线方向上为一个墙单位。本文介绍了数据获取和分析过程,包括粒子跟踪方法和用于配对粒子对的关联方法。通过将归一化速度散度的统计数据与通过随机将1 mm / s的误差相加而获得的散度的统计数据进行比较,估计速度的不确定性优于1 mm / s,小于自由流速度的0.05% 。用粘性子层中速度测量值的最小二乘拟合来近似估算壁剪应力的空间分布。平均流量曲线和速度波动统计数据与预期非常吻合。瞬时跨壁和沿流壁剪应力的联合概率密度分布证明了近壁相干结构的重要性。近壁3D流动结构分为三类,第一类包含一对反向旋转的准流涡旋和高条纹状剪应力。第二类特征是多个涡流,壁应力几乎没有变化。第三组没有缓冲层结构。

著录项

  • 来源
    《Experiments in Fluids》 |2008年第6期|1023-1035|共13页
  • 作者

    J. Sheng; E. Malkiel; J. Katz;

  • 作者单位

    Mechanical Engineering Department The Johns Hopkins University Baltimore MD 21218 USA;

    Mechanical Engineering Department The Johns Hopkins University Baltimore MD 21218 USA;

    Mechanical Engineering Department The Johns Hopkins University Baltimore MD 21218 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号