首页> 外文期刊>Experiments in Fluids >High-resolution imaging of dissipative structures in a turbulent jet flame with laser Rayleigh scattering
【24h】

High-resolution imaging of dissipative structures in a turbulent jet flame with laser Rayleigh scattering

机译:激光瑞利散射对湍流射流火焰中耗散结构的高分辨率成像

获取原文
获取原文并翻译 | 示例

摘要

High-resolution 2-D imaging of laser Rayleigh scattering is used to measure the detailed structure of the thermal dissipation field in a turbulent non-premixed CH4/H2/N2 jet flame. Measurements are performed in the near field (x/d = 5–20) of the flame where the primary combustion reactions interact with the turbulent flow. The contributions of both the axial and radial gradients to the mean thermal dissipation are determined from the 2-D dissipation measurements. The relative contributions of the two components vary significantly with radial position. The dissipation field exhibits thin layers of high dissipation. Noise suppression by adaptive smoothing enables accurate determination of the dissipation-layer widths from single-shot measurements. Probability density functions (PDF) of the dissipation-layer widths conditioned on temperature are approximately log-normal distributions. The conditional layer width PDFs are self-similar functions with the layer widths scaling with temperature to the 0.75 power. The high signal-to-noise ratio of the Rayleigh scattering images coupled with an interlacing technique for noise suppression enable fully resolved measurements of the mean power spectral density (PSD) of the temperature gradients. These spectra are used to determine the turbulence microscales by measuring a cutoff wavelength, λ C , at 2% of the peak PSD. The Batchelor scale is estimated from λ C , and the results are compared with estimates from scaling laws in non-reacting flows. At x/d = 20, the different approaches to determining the Batchelor scale are comparable on the jet centerline. However, the estimates from non-reacting flow scaling laws are significantly less accurate in off-centerline regions and at locations closer to the nozzle exit. Throughout the near field of the jet flame, the measured ratio of a characteristic dissipation-layer width to the local Batchelor scale is larger than values previously reported for the far field of non-reacting flows.
机译:激光瑞利散射的高分辨率二维成像用于测量湍流的非预混合CH4 / H2 / N2 喷射火焰中的散热场的详细结构。在主要燃烧反应与湍流相互作用的火焰近场(x / d = 5–20)中进行测量。轴向和径向梯度对平均热耗散的贡献是根据二维耗散测量确定的。这两个分量的相对贡献随径向位置而显着变化。耗散场表现出高耗散的薄层。通过自适应平滑进行噪声抑制,可以通过单次测量准确确定耗散层的宽度。以温度为条件的耗散层宽度的概率密度函数(PDF)大约为对数正态分布。条件层宽度PDF是自相似函数,层宽度随温度缩放至0.75幂。瑞利散射图像的高信噪比与隔行扫描技术相结合,可实现噪声抑制,从而可以完全分辨出温度梯度的平均功率谱密度(PSD)。这些光谱用于通过测量峰值PSD的2%处的截止波长λC 来确定湍流微尺度。从λC 估计Batchelor规模,并将结果与​​非反应流中尺度定律的估计值进行比较。在x / d = 20时,确定Batchelor比例的不同方法在喷射中心线上是可比的。但是,非反应式流量缩放定律的估计值在偏离中心线的区域以及更靠近喷嘴出口的位置的准确性大大降低。在整个喷射火焰的近场中,特征耗散层宽度与局部Batchelor标度的测量比率大于先前针对无反应流的远场报告的值。

著录项

  • 来源
    《Experiments in Fluids》 |2008年第2期|221-233|共13页
  • 作者单位

    Combustion Research Facility Sandia National Laboratories Livermore CA 94551 USA;

    Combustion Research Facility Sandia National Laboratories Livermore CA 94551 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号