首页> 外文期刊>Experiments in Fluids >Vortex identification methods based on temporal signal-processing of time-resolved PIV data
【24h】

Vortex identification methods based on temporal signal-processing of time-resolved PIV data

机译:基于时间分辨PIV数据时间信号处理的涡旋识别方法

获取原文
获取原文并翻译 | 示例

摘要

The lack of a universally accepted mathematical definition of a vortex structure has led to a considerable number of Eulerian criteria to identify coherent structures. Most are derived from the instantaneous local velocity gradient tensor and its derivatives and require appropriate thresholds to extract the boundaries of the structures. Notwithstanding their great potential for studying coherent structures, most criteria are not frame-independent and they lack a clear physical meaning. The Lyapunov exponent, a popular tool in dynamical system theory, appears as a promising alternative. This Lagrangian criterion does not suffer from the drawbacks of the Eulerian criteria and is constructed on a simple physical interpretation that includes information on the history of the flow. However, since the computation of the Lyapunov exponent involves the knowledge of fluid particle trajectories, experimental applications are currently restricted to laminar flows and two-dimensional turbulence, provided that velocity fields are time-resolved. In this work, we explore temporal post-treatment methods to extract vortical structures developing in a flow through a smooth axisymmetric constriction. Data from planar time-resolved Particle image velocimetry, measuring two or three components of the velocity vectors, are transformed via the Taylor hypothesis to quasi-instantaneous three-dimensional velocity field and are interpreted in terms of the discrete wavelet decomposition, the finite-time Lyapunov exponent, and the linear stochastic estimation. It appears that these methods can concurrently provide very rich and complementary scalar fields representing the effects of the vortical structures and their interactions in the flow.
机译:缺乏普遍公认的旋涡结构的数学定义导致了许多欧拉准则来识别相干结构。大多数是从瞬时局部速度梯度张量及其导数派生的,并且需要适当的阈值来提取结构的边界。尽管它们具有研究相干结构的巨大潜力,但大多数标准并非独立于帧,并且缺乏明确的物理含义。 Lyapunov指数是动力学系统理论中的一种流行工具,它似乎是有前途的选择。该拉格朗日判据没有遭受欧拉判据的弊端,并且基于简单的物理解释构建而成,该解释包括关于流动历史的信息。但是,由于Lyapunov指数的计算涉及流体粒子轨迹的知识,因此只要速度场是时间分辨的,当前的实验应用仅限于层流和二维湍流。在这项工作中,我们探索了暂时的后处理方法,以提取通过光滑轴对称收缩流形成的旋涡结构。来自平面时间分辨粒子图像测速仪的数据(测量速度矢量的两个或三个分量)通过泰勒假设转换为准瞬时三维速度场,并根据离散小波分解,有限时间来解释Lyapunov指数和线性随机估计。看来这些方法可以同时提供非常丰富和互补的标量场,它们代表了旋涡结构的影响及其在流动中的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号