首页> 外文期刊>Experiments in Fluids >Denoising methods for time-resolved PIV measurements
【24h】

Denoising methods for time-resolved PIV measurements

机译:时间分辨PIV测量的去噪方法

获取原文
获取原文并翻译 | 示例

摘要

The increasing capabilities of currently available high-speed cameras present several new opportunities for particle image velocimetry (PIV). In particular, temporal postprocessing methods can be used to remove spurious vectors but can also be applied to remove inherent noise. This paper explores this second possibility by estimating the error introduced by several denoising methods on manufactured velocity fields. It is found that PIV noise, while autocorrelated in space, is uncorrelated in time, which leads to a significant improvement in the efficiency of temporal denoising methods compared to their spatial counterparts. Among them, the optimal Wiener filter presents better results than convolution- or wavelet-based filters and has the valuable advantage that no adjustments are required, unlike other methods which generally involve the tuning of some parameters that depend on flow and measurement conditions and are not known a priori. Further refinements show that denoised data can be successfully deconvolved to increase the accuracy of remaining small-scale velocity fluctuations, leading in particular to the recovery of the true shape of turbulent spectra. In practice, the computation of the filter function is not always accurate and different procedures can be used to improve the method depending on the flow considered. Some of them are derived from the properties of the time-frequency spectrum provided by the wavelet transform.
机译:当前可用的高速相机功能的增强为粒子图像测速(PIV)提供了一些新的机会。特别地,时间后处理方法可以用于去除虚假矢量,但是也可以应用于去除固有噪声。本文通过估计几种在制造速度场上的降噪方法引入的误差来探索第二种可能性。已经发现,PIV噪声虽然在空间上是自相关的,但在时间上却是不相关的,这导致与空间对应方法相比,时间去噪方法的效率有了显着提高。其中,最佳的维纳滤波器比基于卷积或小波的滤波器呈现更好的结果,并且具有不需要进行调整的宝贵优势,这与其他方法不同,后者通常涉及根据流量和测量条件调整某些参数,而无需调整先验的。进一步的改进表明,可以成功地对去噪后的数据进行反卷积,以提高剩余的小尺度速度波动的准确性,尤其是可以恢复湍流光谱的真实形状。实际上,滤波函数的计算并不总是准确的,并且可以根据所考虑的流程使用不同的过程来改进该方法。其中一些是从小波变换提供的时间频谱特性中得出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号