首页> 外文期刊>Experiments in Fluids >Template matching for improved accuracy in molecular tagging velocimetry
【24h】

Template matching for improved accuracy in molecular tagging velocimetry

机译:模板匹配可提高分子标记测速的准确性

获取原文
获取原文并翻译 | 示例

摘要

In 2D molecular tagging velocimetry (MTV), tags are written into a fluid flow with a laser grid and imaged at discrete times. These images are analyzed to calculate Lagrangian displacement vectors, often by direct cross correlation. The cross correlation method is inherited from particle imaging velocimetry, where the correlated images contain a random pattern of particles. A template matching method is presented here which takes advantage of the known geometry of laser written tag grids in MTV to achieve better accuracy. Grid intersections are explicitly located in each image by correlation with a template with several linear and rotational degrees of freedom. The template is a continuous mathematical function, so the correlation may be optimized at arbitrary sub-pixel resolution. The template is smooth at the spatial scale of the image noise, so random error is substantially suppressed. Under typical experimental conditions at low imaging resolution, displacement uncertainty is reduced by a factor of 5 compared to the direct cross correlation method. Due to the rotational degrees of freedom, displacement uncertainty is insensitive to highly deformed grids, thus permitting longer delay times and increasing the relative accuracy and dynamic range of the measurement. In addition, measured rotational displacements yield velocity gradients which improve the fidelity of interpolated velocity maps.
机译:在2D分子标记测速(MTV)中,标记通过激光栅格写入流体流并在不连续的时间成像。通常通过直接互相关来分析这些图像以计算拉格朗日位移向量。互相关方法是从粒子成像测速法继承的,其中相关图像包含粒子的随机模式。这里介绍了一种模板匹配方法,该方法利用了MTV中激光书写的标签栅格的已知几何形状来实现更好的精度。通过与具有几个线性和旋转自由度的模板相关联,可以在每个图像中明确定位网格交叉点。模板是一个连续的数学函数,因此可以在任意子像素分辨率下优化相关性。模板在图像噪声的空间尺度上是平滑的,因此可以极大地抑制随机误差。在低成像分辨率的典型实验条件下,与直接互相关方法相比,位移不确定性降低了5倍。由于旋转自由度,位移不确定性对高度变形的网格不敏感,因此允许更长的延迟时间并增加了测量的相对精度和动态范围。此外,测得的旋转位移会产生速度梯度,从而提高了插值速度图的保真度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号