首页> 外文期刊>Experiments in Fluids >Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer
【24h】

Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

机译:湍流边界层中风轮机顺风的近尾流结构

获取原文

摘要

Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (x–z) and vertical span-wise planes (y–z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and validation of numerical models.
机译:风力涡轮机在大气边界层的表面层中运行,在那里它们经受强风切变和相对较高的湍流水平。预期这些进入的边界层流动特性会影响风力涡轮机尾流的结构。近苏醒区的特征在于复杂的耦合涡旋系统(包括螺旋尖端涡旋),不稳定和强烈的湍流非均质性。关于近尾湍流的空间分布,涡旋行为及其对远尾顺风发展的影响的有限信息阻碍了我们预测风力发电场的风力发电量和疲劳负荷的能力。这就需要更好地了解3D流的空间分布以及近尾流中的相干湍流结构。设计并进行了系统的风洞实验,以表征放置在中性边界层流中的模型风力涡轮机的近尾流顺风结构。转子直径为13厘米,轮毂高度为10.5厘米的水平轴三叶片风力涡轮机模型占据了边界层的最低三分之一。高分辨率粒子图像测速仪(PIV)用于测量多个垂直流向平面(x–z)和垂直跨向平面(y–z)中的速度。特别是,我们确定了强涡旋和涡旋强度的局部区域,这是螺旋尖端涡旋的特征。这些涡旋在最上端水平最为明显,并一直沿顺风方向旋转两到三个转子直径。这些测量还显示出强流旋转以及近尾流中平均流和湍流结构的高度非轴对称分布。结果为控制浸没在中性边界层中的风力涡轮机近尾流发展的物理机制提供了新的见解。它们还用作数值模型开发和验证的重要数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号