首页> 外文期刊>International Journal of High Performance Computing Applications >Maximizing resource usage in multifold molecular dynamics with rCUDA
【24h】

Maximizing resource usage in multifold molecular dynamics with rCUDA

机译:使用rCUDA最大化分子动力学中的资源使用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The full-understanding of the dynamics of molecular systems at the atomic scale is of great relevance in the fields of chemistry, physics, materials science, and drug discovery just to name a few. Molecular dynamics (MD) is a widely used computer tool for simulating the dynamical behavior of molecules. However, the computational horsepower required by MD simulations is too high to obtain conclusive results in real-world scenarios. This is mainly motivated by two factors: (1) the long execution time required by each MD simulation (usually in the nanoseconds and microseconds scale, and beyond) and (2) the large number of simulations required in drug discovery to study the interactions between a large library of compounds and a given protein target. To deal with the former, graphics processing units (GPUs) have come up into the scene. The latter has been traditionally approached by launching large amounts of simulations in computing clusters that may contain several GPUs on each node. However, GPUs are targeted as a single node that only runs one MD instance at a time, which translates into low GPU occupancy ratios and therefore low throughput. In this work, we propose a strategy to increase the overall throughput of MD simulations by increasing the GPU occupancy through virtualized GPUs. We use the remote CUDA (rCUDA) middleware as a tool to decouple GPUs from CPUs, and thus enabling multi-tenancy of the virtual GPUs. As a working test in the drug discovery field, we studied the binding process of a novel flavonol to DNA with the GROningen MAchine for Chemical Simulations (GROMACS) MD package. Our results show that the use of rCUDA provides with a 1.21x speed-up factor compared to the CUDA counterpart version while requiring a similar power budget.
机译:在化学,物理学,材料科学和药物发现等领域,对原子尺度上分子系统动力学的全面了解具有重大意义。分子动力学(MD)是一种广泛用于模拟分子动力学行为的计算机工具。但是,MD仿真所需的计算能力太高,无法在实际场景中获得确定的结果。这主要是由两个因素引起的:(1)每次MD模拟都需要较长的执行时间(通常在纳秒和微秒级,甚至更高),以及(2)药物发现中需要大量的模拟来研究两者之间的相互作用大型化合物库和给定的蛋白质靶标。为了应对前者,图形处理单元(GPU)出现了。传统上通过在计算集群中启动大量仿真来接近后者,每个节点上可能包含多个GPU。但是,GPU的目标是单个节点,一次仅运行一个MD实例,这意味着GPU占用率较低,因此吞吐量较低。在这项工作中,我们提出了一种通过虚拟化GPU增加GPU占用率来提高MD仿真总体吞吐量的策略。我们使用远程CUDA(rCUDA)中间件作为将GPU与CPU分离的工具,从而实现了虚拟GPU的多租户。作为药物发现领域的一项工作测试,我们使用GROningen机器化学模拟(GROMACS)MD套件研究了新型黄酮醇与DNA的结合过程。我们的结果表明,与CUDA对应版本相比,使用rCUDA可提供1.21倍的加速因子,同时需要类似的功耗预算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号