机译:通过重新排序并发内核提交来最大程度地利用GPU资源
Institute of Computing, Federal FluminenseUniversity, Niteroi-RJ 24210-240, Brazil;
Department of System Engineering, StateUniversity of Rio de Janeiro, Maracana-RJ20550-900, Brazil;
Institute of Computing, Federal FluminenseUniversity, Niteroi-RJ 24210-240, Brazil;
Institute of Computing, Federal FluminenseUniversity, Niteroi-RJ 24210-240, Brazil;
Institute of Computing, Federal FluminenseUniversity, Niteroi-RJ 24210-240, Brazil;
Institute of Computing, Federal FluminenseUniversity, Niteroi-RJ 24210-240, Brazil;
Institute of Computing, Federal FluminenseUniversity, Niteroi-RJ 24210-240, Brazil;
graphics processing unit; kernel scheduling; multiprogramming;
机译:通过重新排序并发内核提交来最大限度地提高GPU资源使用情况
机译:cCUDA:GPU上并发内核的有效协同调度
机译:使用机器学习技术分析GPU上并发内核执行的性能
机译:从应用程序执行的资源使用中开发可识别干扰的GPU容器并发学习
机译:在多核处理器和GPU上实现和优化大数据科学内核
机译:关于GPU在医学图像序列中进行有效运动估计的用途
机译:使用并发内核在多个GpU上实现可扩展的CaIm离散化