首页> 外文期刊>Concurrency and computation: practice and experience >Maximizing the GPU resource usage by reordering concurrent kernels submission
【24h】

Maximizing the GPU resource usage by reordering concurrent kernels submission

机译:通过重新排序并发内核提交来最大程度地利用GPU资源

获取原文
获取原文并翻译 | 示例

摘要

The increasing amount of resources available on current GPUs sparked new interest in theproblem of sharing its resources by different kernels. While new generations of GPUs supportconcurrent kernel execution, their scheduling decisions are taken by the hardware at runtime. Thehardware decisions, however, heavily depend on the order at which the kernels are submitted toexecution. In this work, we propose a novel optimization approach to reorder the kernels invocationfocusing on maximizing the resources utilization, improving the average turnaround time.We model the kernel assignments to the hardware resources as a series of knapsack problemsand use a dynamic programming approach to solve them.We evaluate our method using kernelswith different sizes and resource requirements. Our results show significant gains in the averageturnaround time and system throughput compared to the kernels submission implemented inmodern GPUs.
机译:当前GPU上可用资源的数量不断增加,引发了人们对由不同内核共享其资源的问题的新兴趣。尽管新一代GPU支持并发内核执行,但其调度决策由硬件在运行时决定。但是,硬件决策在很大程度上取决于将内核提交给执行的顺序。在这项工作中,我们提出了一种新颖的优化方法来对内核调用进行重新排序 r n,着重于最大程度地利用资源,缩短了平均周转时间。 r n我们将内核分配给硬件资源的方式建模为一系列背包问题 r n并使用动态编程方法来解决它们。我们使用具有不同大小和资源要求的内核 r n来评估我们的方法。我们的结果表明,与在现代GPU中实现的内核提交相比,平均周转时间和系统吞吐量显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号