首页> 外文期刊>Evolving Systems >Automatic model decomposition and reuse in an evolutionary cognitive mechanism
【24h】

Automatic model decomposition and reuse in an evolutionary cognitive mechanism

机译:进化认知机制中模型的自动分解和重用

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of automatically obtaining primitives of the models an evolutionary cognitive mechanism is producing for a robot through its real time interaction with the world. The models are instantiated as Artificial Neural Networks (ANNs) and the objective is to obtain ANNs that cooperate in the process of modelling complex functions. An algorithm where the combination of networks takes place at the phenotypic or functional level is proposed. Thus, a population of networks that are automatically classified into different species depending on the performance of their phenotype is evolved, and individuals from each species cooperate forming a group to obtain a complex output. The components that make up the groups are basic ANNs (primitives) and may be reused in other modelling processes as seeds or combined to generate new solutions. The parameter that reflects the difference between ANNs is their affinity vector, the value which is automatically created and modified for each ANN through a competition based clustering process within the evolutionary process. The main objective of this approach is to explore one path to gradually model complex functions similar to those that arise when obtaining environment or internal models within robotic cognitive systems.
机译:本文解决了自动获取模型原语的问题,该模型是通过机器人与世界的实时交互为机器人生成的进化认知机制。该模型被实例化为人工神经网络(ANN),目的是获得在复杂功能建模过程中相互协作的ANN。提出了一种在表型或功能级别上进行网络组合的算法。因此,进化出了根据其表型的表现自动分类为不同物种的网络群体,并且来自每个物种的个体合作形成一个群体以获得复杂的输出。组成这些组的组件是基本的ANN(基元),可以在其他建模过程中作为种子重复使用或组合使用以生成新的解决方案。反映ANN之间差异的参数是它们的亲和力矢量,该值是在进化过程中通过基于竞争的聚类过程为每个ANN自动创建和修改的。这种方法的主要目标是探索一种逐步建模复杂功能的路径,类似于在机器人认知系统中获取环境或内部模型时出现的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号