首页> 外文期刊>Evolutionary computation >An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm
【24h】

An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm

机译:使用混合进化-局部搜索算法的双级多目标规划问题的高效,精确解法

获取原文
获取原文并翻译 | 示例

摘要

Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
机译:双层优化问题涉及两个优化任务(上层和下层),其中每个可行的上层解决方案都必须对应于下层优化问题的最优解决方案。这些问题通常出现在许多实际的问题解决任务中,包括最佳控制,过程优化,游戏策略开发,运输问题等。但是,它们通常通过使用近似求解程序来替换较低级别的优化任务而转换为单级优化问题。尽管存在许多涉及单目标双层编程问题的理论,数值和进化优化研究,但很少有研究关注双层编程问题中每个级别的多个相互冲突的目标。在本文中,我们解决了与解决多目标双层编程问题相关的某些复杂问题,提出了具有挑战性的测试问题,并提出了一种可行且基于混合进化和局部搜索的算法作为解决方法。混合方法的性能优于许多现有方法,并且可以扩展到本研究中使用的多达40个变量的困难测试问题。总体大小和终止标准是自适应的,因此用户不需要提供其他参数。研究表明,与通常的解决方案相比,进化算法在解决此类具有实际重要性的困难问题上具有明显的优势,而通常的解决方案是通过计算上昂贵的嵌套过程进行的。该研究提出了与多目标双层编程有关的许多问题,希望该研究将激发EMO和其他研究人员更多地关注这一重要且困难的问题解决活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号