...
首页> 外文期刊>Environmental Science & Technology >Experimental Evaluation and Mathematical Modeling of Microbially Enhanced Tetrachloroethene (PCE) Dissolution
【24h】

Experimental Evaluation and Mathematical Modeling of Microbially Enhanced Tetrachloroethene (PCE) Dissolution

机译:微生物增强四氯乙烯(PCE)溶解的实验评估和数学建模

获取原文
获取原文并翻译 | 示例
           

摘要

Experiments to assess metabolic reductive dechlorination (chlororespiration) at high concentration levels consistent with the presence of free-phase tetrachloroethene (PCE) were performed using three PCE-to-cis-1,2-dichloroethene (cis-DCE) dechlorinating pure cultures (Sulfurospirillum multivorans, Desulfuromonas michiganensis strain BB1, and Geobacter lovleyi strain SZ) and Desulfi-tobacterium sp. strain Viet1, a PCE-to-trichloroethene (TCE) dechlorinating isolate. Despite recent evidence suggesting bacterial PCE-to-cis-DCE dechlorination occurs at or near PCE saturation (0.9-1.2 mM), all cultures tested ceased dechlorinating at ~0.54 mM PCE. In the presence of PCE dense nonaqueous phase liquid (DNAPL), strains BB1 and SZ initially dechlorinated, but TCE and cis-DCE production ceased when aqueous PCE concentrations reached inhibitory levels. For S. multivorans, dechlorination proceeded at a rate sufficient to maintain PCE concentrations below inhibitory levels, resulting in continuous cis-DCE production and complete dissolution of the PCE DNAPL. A novel mathematical model, which accounts for loss of dechlorinating activity at inhibitory PCE concentrations, was developed to simultaneously describe PCE-DNAPL dissolution and reductive dechlorination kinetics. The model predicted that conditions corresponding to a bioavailability number (Bn) less than 1.25 x 10~(-2) will lead to dissolution enhancement with the tested cultures, while conditions corresponding to a Bn greater than this threshold value can result in accumulation of PCE to inhibitory dissolved-phase levels, limiting PCE transformation and dissolution enhancement. These results suggest that microorganisms incapable of dechlorinating at high PCE concentrations can enhance the dissolution and transformation of PCE from free-phase DNAPL.
机译:使用三种PCE到顺式1,2-二氯乙烯(cis-DCE)对纯培养物(Sulfurospirillum)进行脱氯的实验,以评估高浓度下与游离相四氯乙烯(PCE)一致的代谢还原性脱氯(氯呼吸) multivorans,Michiganensis的Desulfuromonas菌株BB1和lovleyi的Geobacter菌株SZ)和Desulfi-tobacterium sp。 Viet1菌株,一种PCE到三氯乙烯(TCE)的脱氯分离株。尽管最近有证据表明细菌PCE到顺式DCE的脱氯发生在PCE饱和度(0.9-1.2 mM)或接近PCE饱和度时(0.9-1.2 mM),但所有测试的培养物都在〜0.54 mM PCE处停止了脱氯。在存在PCE致密非水相液体(DNAPL)的情况下,菌株BB1和SZ最初会脱氯,但是当PCE水溶液的浓度达到抑制水平时,TCE和顺式DCE的生产就会停止。对于多菌链霉菌,脱氯以足以将PCE浓度保持在抑制水平以下的速率进行,从而导致连续的顺式DCE产生和PCE DNAPL的完全溶解。建立了一个新颖的数学模型,该模型解释了在抑制性PCE浓度下脱氯活性的下降,以同时描述PCE-DNAPL的溶解和还原性脱氯动力学。该模型预测对应于生物利用度数(Bn)小于1.25 x 10〜(-2)的条件将导致受试培养物的溶出度提高,而对应于Bn大于此阈值的条件可能导致PCE积累到抑制性溶解相水平,限制了PCE转化和溶解增强。这些结果表明,在高PCE浓度下不能脱氯的微生物可以增强PCE从自由相DNAPL的溶解和转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号