首页> 外文期刊>Journal of Contaminant Hydrology >Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis
【24h】

Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis

机译:通过混合培养微生物增强PCE的溶解和还原性脱氯:模型验证和敏感性分析

获取原文
获取原文并翻译 | 示例
           

摘要

Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and ris-l,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of ris-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution.
机译:由于节省了成本,易于实施,法规接受和可持续性,通常考虑将呼吸有机卤化物细菌催化的还原性脱氯用于非水相液体(NAPL)源区的修复。尽管了解关键的脱氯剂,但仍缺乏对控制NAPL溶解速率和排毒(即乙烯形成)的过程和因素的了解。最近的专栏研究表明,四氯乙烯(PCE)溶解和乙烯形成过程中累积增加了5倍(Amos等,2009)。对该柱中的关键地球化学和微生物(即loveoi和Dehalococcoides mccartyi菌株)参数进行时空监测,生成了一个数据集,用作精炼和测试多相组成传输模型的基础。改进的模型能够模拟呼吸有机卤化物的细菌产生和消耗的多种化学成分的反应性转运,并说明底物的局限性和竞争性抑制作用。使用参数估计技术来优化敏感微生物动力学参数的值,包括最大利用率,生物量产量系数和内源性衰减率。模型模拟与实验数据的比较和校准表明,该模型能够准确地再现所测量的废水浓度,同时描绘了沿塔的脱氯器生长和还原性脱氯动力学的趋势。在优化的模型参数上进行的敏感性分析表明,只要电子给体(即氢通量)不受限制,PCE和ris-1,2-二氯乙烯(cis-DCE)转化率和Dehaloccocoides的生长速率就决定了生物增强的溶出度。溶出度的增强与ris-DCE的积累无关。但是,顺式DCE的积累以及色谱柱的长度和流速(即色谱柱的停留时间)对还原脱氯的程度有很大的影响。忽略顺式DCE抑制作用时,该模型高估了乙烯产量的10倍,而停留时间的减少(即色谱柱长度减少2倍或流速增加2倍)导致结果超过70乙烯产量下降%。这些结果表明,必须了解微生物群落组成和活性的时空变化,以建模,预测和管理生物增强的NAPL溶解。

著录项

  • 来源
    《Journal of Contaminant Hydrology》 |2013年第8期|117-130|共14页
  • 作者单位

    Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States;

    Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States;

    Geosyntec Consultants, Kennesaw, CA 30144, United States;

    Ceosyntec Consultants, San Francisco, CA 94105, United States;

    Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States;

    Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States,Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States;

    Department of Civil and Environmental Engineering, US Air Force Academy, CO 80840, United States,Department of Civil and Environmental Engineering, 2354 Fairchild Drive, Suite 6J-159, USAF Academy CO 80840-6232, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PCE; NAPL; Enhanced dissolution; Modeling; Model verification; Reductive dechlorination;

    机译:PCE;NAPL;增强溶出度;造型;模型验证;还原脱氯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号