首页> 外文期刊>Environmental Science & Technology >Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction
【24h】

Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction

机译:生物和非生物锰氧化物还原过程中实时锰相动力学

获取原文
获取原文并翻译 | 示例
       

摘要

Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(Ⅳ) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oncidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(Ⅱ)-phosphate, manganese-(Ⅱ)-carbonate, and manganese(Ⅲ)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(Ⅲ) oxide appears to depend on aqueous Mn~(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(Ⅳ) oxide reduction, contribute to understanding the mechanism of various Mn(Ⅳ) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata.
机译:锰氧化物通常是高度反应性的,并且可以通过多种无机化学物质以非生物方式进行非生物还原,并且在微生物进行厌氧呼吸时可以容易地还原。为了评估这些不同还原途径及其潜在持久产物的反应机理,我们测量了由化学物质(硫化物和亚铁)和常见的金属还原微生物希瓦氏菌(Shewanella oncidensis)MR-介导的微生物氧化锰还原的序列进程。在几个末端条件下,使用同步加速器X射线光谱测量,辅以X射线衍射和拉曼光谱,对整个反应过程中收集到的沉淀物进行分析。在这些实验中产生的结晶相或潜在的长寿命相包括磷酸锰(Ⅱ),碳酸锰(Ⅱ)和羟基氢氧化锰(Ⅲ)。这些离散相形成的主要控制因素是碱度产生和溶液条件,例如无机碳和磷酸盐的可用性。长寿命的Mn(Ⅲ)氧化物的形成似乎取决于水溶液中Mn〜(2+)的产生以及系统中电子给体和电子受体的相对比例。这些实时测量可识别氧化锰(Ⅳ)还原过程中的矿物学产物,有助于理解各种氧化锰(Ⅳ)还原途径的机制,并有助于解释富锰环境中积极发生的过程并记录在地质记录中富锰地层。

著录项

  • 来源
    《Environmental Science & Technology》 |2016年第8期|4248-4258|共11页
  • 作者单位

    Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States ,Department of Geological Sciences, University of Colorado, Boulder, CO 80309;

    University of Southern California, Los Angeles, California 90089, United States;

    Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States;

    University of Southern California, Los Angeles, California 90089, United States;

    Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:58:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号