...
首页> 外文期刊>Environmental research >Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis,catalytic mechanism, and water remediation application
【24h】

Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis,catalytic mechanism, and water remediation application

机译:纳米细胞形状对二乙基亚福索降解的影响:合成,催化机制和水修复应用

获取原文
获取原文并翻译 | 示例
           

摘要

A series of nanomaterials have been demonstrated to be powerful for direct degradation of diethyl paraoxon (EP) to diethyl phosphate and 4-nitrophenol in aqueous solution. However, comparison of catalytic activity of different nanomaterials toward EP is rarely explored. In the present study, four different morphological nanoceria (cubes, rods, polyhedral, and spheres) were synthesized, characterized, and evaluated as a catalyst for the degradation of EP in comparison to other commercially available nanomaterials. Among the tested nanoceria, the cerium dioxide (CeO_2) nanopolyhedra possess the best catalytic activity toward the hydrolysis of EP owing to their abundant oxygen vacancy sites, optimal ratio of Ce(Ⅲ) to Ce(Ⅳ), and specific exposed facets. Under the conditions of 0.2 M NH_3/NH_4C1 buffer and 25 °C, the CeO_2 nanopolyhedra catalyzed the reduction of EP to 4-nitrophenol with a > 99% conversion at pH 8.0 for 50 h, at pH 10.0 for 12 h, and at pH 12.0 for 2.5 h. The catalytic degradation of nearly 100% EP in NH_3/NH_4C1 buffer (pH 10.0) at 25 °C is in the decreasing order of CeO_2 nanopolyhedra > CeO_2 nanorods > ZnO nanospheres (NSs) > CeO_2 nanocubes > TiO_2 NSs > CeO_2 NSs > Fe_3O_4 NSs ~ Co_3O_4 NSs ~ control experiment. The mechanism for the degradation of EP was confirmed by monitoring catalytic kinetics of the CeO_2 nanopolyhedra in the presence of EP, dimethyl paraoxon, 4-ni-trophenyl phosphate, and parathion. The nanocomposites were simply fabricated by electrostatic self-assembly of the CeO_2 nanopolyhedra and polytdiallyldimethylammonium chloride)-capped gold nanoparticles (PDDA-AuNPs). The resultant nanocomposites still efficiently catalyzed NaBH4-mediated reduction of 4-nitrophenol to 4-aminophenol with a normalized rate constant of 6.68 ± 0.72 s~(-1) g~(-1) and a chemoselectivity of > 99%. In confirmation of the robustness and applicability of the as-prepared nanocomposites, they were further used to catalyze the degradation of EP to 4-amionphenol in river water and seawater.
机译:已经证明了一系列纳米材料是强大的,用于直接降解磷酸二乙基亚乙酯(EP)与水溶液中的4-硝基苯酚。然而,很少探索不同纳米材料对EP的催化活性的比较。在本研究中,合成,其特征和评估了四种不同的形态纳米(立方体,棒,多面体和球体)作为与其他市售的纳米材料相比,作为EP降解的催化剂。在测试的纳米钙中,由于其丰富的氧空位位点,二氧化铈(CEO_2)纳米多核朝向EP的水解最佳催化活性,Ce(Ⅲ)与Ce(Ⅳ)和特定露面的特定露面。在0.2M NH_3 / NH_4C1缓冲液和25℃的条件下,CEO_2纳米多孔催化在pH.8.0的pH1.0.0时在pH10.0,在pH10.0℃下催化EP至4-硝基苯酚的还原,并在pH下12.0 2.5小时。在25℃下NH_3 / NH_4C1缓冲液(pH10.0)中近100%EP的催化降解是CEO_2纳米多发的降低顺序> CEO_2纳米棒> ZnO纳米球(NSS)> CEO_2纳米载体> TiO_2 NSS> CEO_2 NSS> FE_3O_4 NSS 〜CO_3O_4 NSS〜控制实验。通过监测CEO_2纳米多发的催化动力学在EP,二甲基亚福膦,磷酸酯和对硫磷存在下监测CEO_2纳米多发的催化动力学来证实EP的降解机制。通过CeO_2纳米多核和聚钛酰基氯化铵的静电自组装制造纳米复合材料 - 氯化物的金纳米粒子(PDDA-AUNP)。所得纳米复合材料仍然有效地催化了NaBH 4介导的4-硝基苯酚至4-氨基苯酚的官期化率常数为6.68±0.72 s〜(-1)g〜(-1),以及> 99%的化学选择性。确认制备纳米复合材料的稳健性和适用性,还用于催化河水和海水中EP至4-氨基酚的降解。

著录项

  • 来源
    《Environmental research》 |2020年第9期|109653.1-109653.10|共10页
  • 作者单位

    Department of Chemistry National Sun Yat-sen University No. 70 Lien-hai Road Gushan District Kaohsiung 80424 Taiwan;

    Department of Chemistry National Sun Yat-sen University No. 70 Lien-hai Road Gushan District Kaohsiung 80424 Taiwan Department of College of Ecology and Resource Engineering Wuyi University Fujian 354300 China;

    Department of Chemistry National Sun Yat-sen University No. 70 Lien-hai Road Gushan District Kaohsiung 80424 Taiwan School of Pharmacy Kaohsiung Medical University No. 100 Shiquan 1stRoad Sanmin District Kaohsiung 80708 Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ethyl paraoxon; Degradation; Cerium dioxide; Gold nanoparticles; Nanocomposites;

    机译:乙酸乙酯;降解;二氧化铈;金纳米颗粒;纳米复合材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号