首页> 外文期刊>Environmental progress >Thermoeconomic Analysis and Optimization of Post-combustion CO_2 Recovery Unit Utilizing Absorption Refrigeration System for a Natural-Gas-Fired Power Plant
【24h】

Thermoeconomic Analysis and Optimization of Post-combustion CO_2 Recovery Unit Utilizing Absorption Refrigeration System for a Natural-Gas-Fired Power Plant

机译:天然气发电厂利用吸收式制冷系统的燃烧后CO_2回收装置的热经济分析和优化

获取原文
获取原文并翻译 | 示例

摘要

Exergy and exergoeconomic analyses have been used to set out weaknesses of the postcombustion CO_2 capture unit of Besat power plant that uses an ammonia absorption refrigeration system for CO_2 liquefaction. The energy required for the absorption system is provided by the flue gas. The liquefied CO_2 is used for beverage and food industries. The exergoeconomic costs of all utility streams and processes are calculated through a systematic method of assigning exer-getic cost relations to the streams. 'The results point out that the exergy destruction of the CO_3 stripper and absorber columns are the highest, and according to the cost-based information, potential locations for the process improvement are proposed. A comprehensive method based on thermodynamic and mathematical methods has been proposed to acquire efficient design parameters and consumed power in compressors. It is based on a combination of Aspen HYSYS~® and MATLAB~® to do calculations and then an optimization procedure based on genetic algorithms. Results show that the production cost of each ton CO_2 is equal to 6.05 (USD/ton) and return on investment can also be obtained by 2.5 years considering USD 1,600,000 of annual revenue.
机译:用能值和能经济性分析来确定Besat电厂燃烧后CO_2捕集单元的弱点,该捕集单元使用氨吸收式制冷系统进行CO_2液化。吸收系统所需的能量由烟气提供。液化的CO_2用于饮料和食品工业。所有公用事业流和过程的劳动经济成本是通过将动力成本关系分配给各个流的系统方法来计算的。 ``结果指出,CO_3汽提塔和吸收塔的火用破坏最大,并且根据基于成本的信息,提出了改进工艺的潜在位置。提出了一种基于热力学和数学方法的综合方法来获取有效的设计参数和压缩机的功耗。它基于Aspen HYSYS〜和MATLAB〜®的组合进行计算,然后基于遗传算法进行优化。结果表明,每吨CO_2的生产成本等于6.05(美元/吨),并且考虑年收入1,600,000美元,也可以在2.5年内获得投资回报。

著录项

  • 来源
    《Environmental progress》 |2018年第3期|1075-1084|共10页
  • 作者单位

    Department of Renewable Energies and Environment, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran;

    Chemical and Petroleum Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran;

    Escuela de Ingenieria y Arquitectura, Departamento de Ingenieria Mecanica, Universidad de Zaragoza, Maria de Luna 3, Zaragoza 50018, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CCS; exergy; optimization; genetic algorithm; MEA;

    机译:CCS;火用优化;遗传算法多边环境协定;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号