首页> 外文期刊>Environmental Monitoring and Assessment >Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map
【24h】

Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map

机译:使用机器学习模型和相关不确定性地图大规模数字映射TOPSOIL总氮

获取原文
获取原文并翻译 | 示例

摘要

Understanding the spatial distribution of soil nutrients and factors affecting their concentration and availability is crucial for soil fertility management and sustainable land utilization while quantifying factors affecting soil nitrogen distribution in Qorveh-Dehgolan plain is mostly lacking. This study, thus, aimed at digital modeling and mapping the spatial distribution of topsoil total nitrogen (TN) in Qorveh-Dehgolan plain with an area of 150,000 ha using random forest (RF), decision tree (DT), and cubist (CB) algorithms. A total of 130 observation points were collected from a depth of 0 to 30 cm from topsoil surfaces based on a random sampling pattern. Then, soil physicochemical properties, calcium carbonate equivalent, organic carbon, and topsoil total nitrogen were measured. A number of 51 environmental variables including 31 geomorphometric attributes derived from a digital elevation model with 12.5-m spatial resolution, 13 spectral indices and reflectance from SENTINEL-2 satellite (MSIsensor), and five soil properties and two spatial variables of latitude and longitude were used as covariates for digital mapping of topsoil total nitrogen. The most appropriate covariates were then selected by the Boruta algorithm in the R software environment. A standard deviation map was produced to show model uncertainty. The covariate selection resulted in the separation of 14 effective covariates in the spatial prediction of topsoil total nitrogen by using the data mining algorithms. The validation of digital mapping of topsoil total nitrogen by RF, DT, and CB models using 20% of independent data showed root mean square error (RMSE) of 0.032, 0.035, and 0.043%; mean absolute error (MAE) of 0.0008, 0.001, and 0.002%; and based on the coefficients of determination of 0.42, 0.38, 0.35, respectively. Relative importance (RI) of environmental covariates using the %IncMSE index indicated the importance of two geomorphometric variables of midslope position and normalized height along with SAVI and NDVI remote sensing variables in the spatial modeling and distribution of total nitrogen in the studied lands. The RF prediction and associated uncertainty maps, with show high accuracy and low standard deviation in the most part of study area, reveled low overfitting and overtraining in soil-landscape modeling; so, this model can lead to the development of a digital map of soil surface properties with acceptable accuracy for sustainable land utilization.
机译:了解土壤营养素的空间分布和影响其浓度和可用性的因素对土壤肥力管理和可持续土地利用至关重要,同时量化影响Qorveh-Dehgolan平原土壤氮气分布的因素主要缺乏。因此,该研究旨在旨在数字建模和绘制Qorveh-Dehgolan平原中的Topsoil总氮(Tn)的空间分布,使用随机林(RF),决策树(DT)和CB)(CB),面积为150,000公顷算法。基于随机采样图案,将总共130个观察点从TOOSIL表面的深度从0到30厘米的深度收集。然后,测量土壤物理化学性质,碳酸钙等效物,有机碳和全氮总氮。包括从数字高度模型的31个地球素数变量,包括12.5-m空间分辨率,13个光谱索引和来自哨兵-2卫星(Msisensor)的光谱指数和反射率,以及五个土壤属性和两个空间变量的纬度和经度用作表达全氮的数字映射的协调因子。然后通过BORUTA算法在R软件环境中选择最合适的协变量。制作标准偏差图以显示模型不确定性。通过使用数据挖掘算法,调节选择通过使用数据挖掘算法分离TopSoil总氮的空间预测中的14个有效协变量。 RF,DT和CB模型的验证TOPSOIL总氮的数量映射,使用20%的独立数据显示出根均方误差(RMSE)0.032,0.035和0.043%;平均误差(MAE)为0.0008,0.001和0.002%;基于测定系数0.42,0.38,0.35。使用百分比Incmse指数的环境协变量的相对重要性(RI)表明了中级地位位置和标准化高度的两个地形变量以及SAVI和NDVI遥感变量在所学习的土地中的空间建模和分布中的分布。 RF预测和相关的不确定性地图,在大多数研究区,在土壤 - 景观建模中发出高精度和低标准偏差。因此,该模型可以导致土壤表面特性的数字地图的发展,可接受的可持续土地利用精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号