首页> 外文期刊>Environmental Modelling & Software >A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions
【24h】

A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions

机译:使用神经分类器和天气预报对臭氧峰和超标水平进行24小时预报

获取原文
获取原文并翻译 | 示例

摘要

A neural network combined to a neural classifier is used in a real time forecasting of hourly maximum ozone in the centre of France, in an urban atmosphere. This neural model is based on the MultiLayer Perception (MLP) structure. The inputs of the statistical network are model output statistics of the weather predictions from the French National Weather Service. These predicted meteorological parameters are very easily available through an air quality network. The lead time used in this forecasting is (t + 24) h. Efforts are related to a regularisation method which is based on a Bayesian Information Criterion-like and to the determination of a confidence interval of forecasting. We offer a statistical validation between various statistical models and a deterministic chemistry-transport model. In this experiment, with the final neural network, the ozone peaks are fairly well predicted (in terms of global fit), with an Agreement Index = 92%, the Mean Absolute Error = the Root Mean Square Error = 15 μg m~(-3) and the Mean Bias Error = 5 μg m~(-3), where the European threshold of the hourly ozone is 180 μg m~(-3). To improve the performance of this exceedance forecasting, instead of the previous model, we use a neural classifier with a sigmoid function in the output layer. The output of the network ranges from [0,1] and can be interpreted as the probability of exceedance of the threshold. This model is compared to a classical logistic regression. With this neural classifier, the Success Index of forecasting is 78% whereas it is from 65% to 72% with the classical MLPs. During the validation phase, in the Summer of 2003, six ozone peaks above the threshold were detected. They actually were seven. Finally, the model called NEUROZONE is now used in real time. New data will be introduced in the training data each year, at the end of September. The network will be re-trained and new regression parameters estimated. So, one of the main difficulties in the training phase — namely the low frequency of ozone peaks above the threshold in this region — will be solved.
机译:结合神经分类器的神经网络用于实时预测法国中部城市大气中每小时的最大臭氧量。该神经模型基于多层感知(MLP)结构。统计网络的输入是来自法国国家气象局的天气预报的模型输出统计。这些预测的气象参数很容易通过空气质量网络获得。该预测中使用的提前期为(t + 24)h。努力与基于贝叶斯信息准则的正则化方法以及预测的置信区间的确定有关。我们提供各种统计模型与确定性化学迁移模型之间的统计验证。在该实验中,使用最终的神经网络,可以很好地预测臭氧峰(根据整体拟合),一致性指数= 92%,平均绝对误差=均方根误差= 15μgm〜(- 3)和平均偏差误差= 5μgm〜(-3),其中每小时臭氧的欧洲阈值为180μgm〜(-3)。为了改善这种超出预测的性能,我们在输出层中使用具有S型函数的神经分类器,而不是先前的模型。网络的输出范围为[0,1],可以解释为超出阈值的概率。将该模型与经典逻辑回归进行比较。使用此神经分类器,预测的成功指数为78%,而传统MLP的成功指数为65%至72%。在验证阶段,2003年夏季,检测到六个高于阈值的臭氧峰。他们实际上是七岁。最后,现在可以实时使用称为NEUROZONE的模型。每年9月底,新数据将引入培训数据中。将对网络进行重新训练,并估计新的回归参数。因此,将解决培训阶段的主要困难之一,即该区域臭氧峰的低频频率高于阈值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号