首页> 外文期刊>Environmental Modelling & Software >Assessing climate change and asset deterioration impacts on water distribution networks: Demand-driven or pressure-driven network modeling?
【24h】

Assessing climate change and asset deterioration impacts on water distribution networks: Demand-driven or pressure-driven network modeling?

机译:评估气候变化和资产恶化对配水网络的影响:需求驱动或压力驱动的网络建模?

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This manuscript compares demand-driven and pressure-driven hydraulic network simulation models for assessing hydraulic capacity under uncertain scenarios. A stochastic approach is implemented assuming possible alteration of boundary conditions due to climate and socio-economic changes (i.e., the increase of peaks of customers demands), and system deterioration (i.e., the increase of pipe internal hydraulic resistances and background leakages). Two real water distribution networks located in Southern Italy are used for analyses. Results show that demand-driven analysis underestimates the hydraulic network capacity with respect to pressure-driven analysis. In fact, pressure-driven analysis assumes the components of model demands (human-based and leakage-based) as dependent on pressure status of the system, and thus returns a more reasonable number and location of critical nodes than demand-driven analysis. Furthermore, demand-driven analysis does not predict the water demand that can be realistically supplied to customers under pressure-deficient system functioning. Therefore, the use of pressure-driven analysis is advisable to support water managers to allocate budgets for planning rehabilitation works aimed at increasing the hydraulic capacity of the networks.
机译:该手稿比较了需求驱动和压力驱动的液压网络仿真模型,以评估不确定情况下的液压容量。假设由于气候和社会经济变化导致边界条件可能发生变化(即客户需求高峰的增加)以及系统恶化(即管道内部水力阻力和背景泄漏的增加),则采用随机方法。使用位于意大利南部的两个真实的供水网络进行分析。结果表明,相对于压力驱动分析,需求驱动分析低估了液压网络的容量。实际上,压力驱动分析假定模型需求(基于人员和基于泄漏)的组件取决于系统的压力状态,因此与需求驱动分析相比,返回的关键节点数量和位置更为合理。此外,需求驱动分析无法预测在压力不足的系统功能下可以实际提供给客户的水需求。因此,建议使用压力驱动的分析来支持水管理人员分配预算,以规划旨在提高网络水力容量的修复工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号