首页> 外文期刊>Environmental earth sciences >Marble decay induced by thermal strains: simulations and experiments
【24h】

Marble decay induced by thermal strains: simulations and experiments

机译:热应变引起的大理石衰减:模拟和实验

获取原文
获取原文并翻译 | 示例
           

摘要

Thermoelastic behavior of different marble types was analyzed using computational modeling and experimental measurements. Eight marble samples with different composition, grain size, grain boundary geometry, and texture were investigated. Calcitic and dolomitic marbles were considered. The average grain size varies from 75 urn to 1.75 mm; grain boundary geometry differs from nearly equigranular straight grain boundaries to inequigranular-interlobate grain boundaries. Four typical marble texture types were observed by EBSD measurements: weak texture; strong texture; girdle texture and high-temperature texture. These crystallographic orientations were used in conjunction with microstructure-based finite element analysis to compute the thermoelastic responses of marble upon heating. Microstructural response maps highlight regions and conditions in the marble fabric that are susceptible to degradation phenomena. This behavior was compared to the measured thermal expansion behavior, which shows increasing residual strains upon repetitive heating-cooling cycles. The thermal expansion behavior as a function of temperature changes can be classified into four categories: (a) isotropic thermal expansion with small or no residual strain; (b) anisotropic thermal expansion with small or no residual strain; (c) isotropic thermal expansion with a residual strain; and (d) anisotropic thermal expansion with residual strain. Thermal expansion coefficients were calculated for both simulated and experimental data and also modeled from the texture using the MTEX software. Fabric parameters control the amount and directional dependence of the thermal expansion. Marbles with strong texture show higher directional dependence of the thermal expansion coefficients and have smaller microstructural values of the maximum principal stress and strain energy density, the main precursors of microcracking throughout the marble fabric. In contrast, marbles with weak texture show isotropic thermal expansion behavior, have a higher propensity to microcracking, and exhibit higher values of maximum principal stress and strain energy density. Good agreement between the experimental and computational results is observed, demonstrating that microstructure-based finite-element simulations are an excellent tool for elucidating influences of rock fabric on thermoelastic behavior.
机译:使用计算模型和实验测量值分析了不同大理石类型的热弹性行为。研究了八个具有不同成分,晶粒尺寸,晶界几何形状和织构的大理石样品。考虑了钙质和白云质大理石。平均晶粒尺寸从75毫米到1.75毫米不等。晶界的几何形状从几乎等晶粒的直晶界到不等晶粒间裂的晶界不同。通过EBSD测量可观察到四种典型的大理石纹理类型:质地较弱;质地坚固;腰带纹理和高温纹理。这些晶体学取向与基于微结构的有限元分析结合使用,可计算出加热后大理石的热弹性响应。微观结构响应图突出显示了大理石织物中易于降解现象的区域和条件。将该行为与测得的热膨胀行为进行了比较,该行为表明在重复的加热-冷却循环中残余应变增加。作为温度变化函数的热膨胀行为可分为四类:(a)各向同性的热膨胀,残余应变很小或没有残余应变; (b)具有很小或没有残余应变的各向异性热膨胀; (c)具有残余应变的各向同性热膨胀; (d)具有残余应变的各向异性热膨胀。计算了模拟和实验数据的热膨胀系数,并使用MTEX软件从织构建模。织物参数控制热膨胀的数量和方向依赖性。具有强质地的大理石显示出较高的热膨胀系数方向依赖性,并且具有较小的最大主应力和应变能密度的微结构值,而微结构值是整个大理石织物微裂纹的主要前兆。相反,质地较弱的大理石表现出各向同性的热膨胀行为,具有更高的微裂纹倾向,并且具有更高的最大主应力和应变能密度值。观察到实验结果与计算结果之间的良好一致性,表明基于微观结构的有限元模拟是阐明岩石织物对热弹性行为影响的出色工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号