首页> 外文期刊>Environment international >Metal bioremediation through growing cells
【24h】

Metal bioremediation through growing cells

机译:通过生长细胞进行金属生物修复

获取原文
获取原文并翻译 | 示例
       

摘要

Heavy-metal pollution represents an important environmental problem due to the toxic effects of metals, and their accumulation throughout the food chain leads to serious ecological and health problems. Metal remediation through common physico-chemical techniques is expensive and unsuitable in case of voluminous effluents containing complexing organic matter and low metal contamination. Biotechnological approaches that are designed to cover such niches have, therefore, received great deal of attention in the recent years. Biosorption studies involving low-cost and often dead/pretreated biomass have dominated the literature and, subsequently, extensive reviews focusing on equilibrium and kinetics of metal biosorption have also come up. However, the low binding capacity of biomass for certain recalcitrant metals such as Ni and failure to effectively remove metals from real industrial effluents due to presence of organic or inorganic ligands limit this approach. At times, when pure biosorptive metal removal is not feasible, application of a judicious consortium of growing metal-resistant cells can ensure better removal through a combination of bioprecipitation, biosorption and continuous metabolic uptake of metals after physical adsorption. Such approach may lead to simultaneous removal of toxic metals, organic loads and other inorganic impurities, as well as allow optimization through development of resistant species. However, sensitivity of living cells to extremes of pH or high metal concentration and need to furnish metabolic energy are some of the major constraints of employing growing cells for bioremediation. The efforts to meet such challenges via isolation of metal-resistant bacterial/fungal strains and exploitation of organic wastes as carbon substrates have began. Recent studies show that the strains (bacteria, yeast and fungi) isolated from contaminated sites possess excellent capability of metal scavenging. Some bacterial strains possess high tolerance to various metals and may be potential candidates for their simultaneous removal from wastes. Evidently, the stage has already been set for the application of metal-resistant growing microbial cells for metal harvesting. This review focuses on the applicability of growing bacterial/fungal/algal cells for metal removal and the efforts directed towards cell/process development to make this option technically/economically viable for the comprehensive treatment of metal-rich effluents.
机译:由于金属的毒害作用,重金属污染是一个重要的环境问题,金属在整个食物链中的积累会导致严重的生态和健康问题。通过普通的物理化学技术进行金属修复是昂贵的,并且不适用于大量污水中含有复杂有机物和低金属污染的情况。因此,近年来,旨在覆盖此类生态位的生物技术方法受到了广泛关注。生物吸附研究涉及低成本且经常死/预处理的生物质,在文献中占主导地位,随后,针对金属生物吸附的平衡和动力学的广泛综述也出现了。然而,由于某些有机或无机配体的存在,生物质对某些难熔金属(如镍)的低结合能力以及无法有效地从实际工业废水中去除金属限制了这种方法。有时,当无法进行单纯的生物吸附金属去除时,明智地使用生长中的抗金属细胞财团可以通过生物沉淀,生物吸附和物理吸附后金属持续代谢吸收的结合来确保更好地去除金属。这种方法可能导致同时去除有毒金属,有机物和其他无机杂质,并允许通过开发抗性物种进行优化。然而,活细胞对极端pH值或高金属浓度的敏感性以及需要提供代谢能是采用生长中的细胞进行生物修复的主要限制。已经开始通过分离抗金属细菌/真菌菌株以及利用有机废物作为碳底物来应对此类挑战的努力。最近的研究表明,从污染部位分离的菌株(细菌,酵母和真菌)具有出色的金属清除能力。一些细菌菌株对各种金属具有很高的耐受性,并且可能是从废物中同时去除的潜在候选者。显然,已经设置了将抗金属生长的微生物细胞用于金属收获的阶段。这篇综述着重于生长中的细菌/真菌/藻类细胞对金属去除的适用性,以及针对细胞/工艺开发的努力,以使该选项在技术上/经济上对富含金属的废水进行综合处理是可行的。

著录项

  • 来源
    《Environment international》 |2004年第2期|p.261-278|共18页
  • 作者

    Anushree Malik;

  • 作者单位

    Department of Applied Chemistry, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 社会与环境;
  • 关键词

    metal; growing cells; bioremediation; metal resistance;

    机译:金属;生长细胞;生物修复;金属抗性;
  • 入库时间 2022-08-17 13:37:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号