首页> 外文期刊>Engineering with Computers >Data discovering of inverse Robin boundary conditions problem in arbitrary connected domain through meshless radial point Hermite interpolation
【24h】

Data discovering of inverse Robin boundary conditions problem in arbitrary connected domain through meshless radial point Hermite interpolation

机译:通过无网径向点Hermite插值,在任意连接域中发现反罗宾边界条件问题的数据

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a suitable method is presented to treat the partial derivative equations, especially the Laplace equation having the Robin boundary conditions. These equations come from classical physics, especially the branch of thermodynamics, and have an efficient role in the field of heat and temperature. Our motivation is to reset a harmonic data obtained from Robin's conditions in the arbitrary plane domain particularly on its boundaries. The applied method is a nodal Hermite meshless col-location technique at which it is formed of radial basis functions to get out the shape functions which is the key to construct the local bases in the neighborhoods of the nodal points. Moreover, by taking into consideration the Hermite interpolation technique, we can impose the boundary conditions directly, the named technique is called "MRPHI," meshless radial point Hermite interpolation, and it is done on some examples so that trustworthy results are obtained.
机译:在本文中,提出了一种合适的方法来处理部分导数方程,尤其是具有罗宾边界条件的拉普拉斯方程。 这些等式来自古典物理学,特别是热力学的分支,并且在热水和温度领域具有有效的作用。 我们的动机是重置从罗宾在任意平面域中获得的谐波数据,特别是在其边界上。 所应用的方法是节点Hermite网格的COL定位技术,其由径向基函数形成,以便离开形状函数,该函数是构建节点点的邻域内构建局部基础的键。 此外,通过考虑到Hermite插值技术,我们可以直接施加边界条件,所谓的技术称为“MRPHI”,无比的辐射点Hermite插值,并且在一些示例中完成,以便获得值得信赖的结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号