首页> 外文期刊>Engineering with Computers >The parameterized level set method for structural topology optimization with shape sensitivity constraint factor
【24h】

The parameterized level set method for structural topology optimization with shape sensitivity constraint factor

机译:具有形状敏感性约束因子的结构拓扑优化的参数化级别设置方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the parameterized level set method (PLSM) has attracted widespread attention for its good stability, high efficiency and the smooth result of topology optimization compared with the conventional level set method. In the PLSM, the radial basis functions (RBFs) are often used to perform interpolation fitting for the conventional level set equation, thereby transforming the iteratively updating partial differential equation (PDE) into ordinary differential equations (ODEs). Hence, the RBFs play a key role in improving efficiency, accuracy and stability of the numerical computation in the PLSM for structural topology optimization, which can describe the structural topology and its change in the optimization process. In particular, the compactly supported radial basis function (CS-RBF) has been widely used in the PLSM for structural topology optimization because it enjoys considerable advantages. In this work, based on the CS-RBF, we propose a PLSM for structural topology optimization by adding the shape sensitivity constraint factor to control the step length in the iterations while updating the design variables with the method of moving asymptote (MMA). With the shape sensitivity constraint factor, the updating step length is changeable and controllable in the iterative process of MMA algorithm so as to increase the optimization speed. Therefore, the efficiency and stability of structural topology optimization can be improved by this method. The feasibility and effectiveness of this method are demonstrated by several typical numerical examples involving topology optimization of single-material and multi-material structures.
机译:近年来,与传统水平集合方法相比,参数化级别集法(PLSM)吸引了其良好的稳定性,高效率和拓扑优化的平稳结果。在PLSM中,径向基函数(RBF)通常用于执行传统水平集更方程的插值拟合,从而将迭代更新的部分微分方程(PDE)变换为常微分方程(ODES)。因此,RBFS在提高PLSM中数值计算的效率,准确性和稳定性中发挥了关键作用,用于结构拓扑优化,可以描述结构拓扑及其在优化过程中的变化。特别地,紧凑地支持的径向基函数(CS-RBF)已广泛应用于PLSM,用于结构拓扑优化,因为它具有相当大的优点。在这项工作中,基于CS-RBF,我们提出了一种PLSM,通过在更新渐近的设计变量(MMA)的方法时,通过添加形状灵敏度约束因子来控制迭代中的步长来控制结构拓扑优化。通过形状灵敏度约束因子,更新步长可在MMA算法的迭代过程中可变,可控制,以便提高优化速度。因此,通过该方法可以改善结构拓扑优化的效率和稳定性。该方法的可行性和有效性通过涉及单材料和多材料结构的拓扑优化的典型数值示例来证明了该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号